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Abstract

Existing symmetric contrastive learning methods suffer
from collapses (complete and dimensional) or quadratic
complexity of objectives. Departure from these methods
which maximize mutual information of two generated views,
along either instance or feature dimension, the proposed
paradigm introduces intermediate variables at the feature
level, and maximizes the consistency between variables and
representations of each view. Specifically, the proposed in-
termediate variables are the nearest group of base vectors
to representations. Hence, we call the proposed method
ARB (Align Representations with Base). Compared with
other symmetric approaches, ARB 1) does not require neg-
ative pairs, which leads the complexity of the overall ob-
jective function is in linear order, 2) reduces feature redun-
dancy, increasing the information density of training sam-
ples, 3) is more robust to output dimension size, which out-
performs previous feature-wise arts over 28% Top-1 accu-
racy on ImageNet-100 under low-dimension settings.

1. Introduction

One major bottleneck in deep learning is the scarcity of
labeled data, and much attention has been paid to unsuper-
vised learning [15, 17, 30, 33] and self-supervised learning
[4, 12, 14, 16, 25, 40]. Among the mainstream approaches,
most fall into one of three classes: generative, pretext-tasks-
based, and contrastive methods. Generative based methods
[15, 30, 39] mainly use pixel-level reconstruction to learn
the backbone. However, the backbone usually learns a se-
mantic feature, so it’s unnecessary to record the information
of each pixel. Therefore, more attempts about discrimina-
tive approaches are proposed to train encoders by providing
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Figure 1. Comparison of direct alignment (a) and the proposed
ARB (b). zA1 and zA2 mean the first and second dimensional fea-
ture of view A. Direct alignment will easily cause dimensional
collapse (green dash line) and redundancy (gray area). In ARB, we
solve these caveats by introducing intermediate variables—nearest
group of base (bA1 and bB2 ) to representations. Then, the redun-
dancy reduces to zero without dimensional collapse.

pretext tasks [10, 17, 31], which gain obviously better per-
formance, such as rotation angle [10] and spot artifacts [39].
Among these, contrastive-based methods [4, 5, 19] are the
mainstream of current research. The incentive is that views
of the same images generated by random augmentation re-
tain similar semantic information. Hence, aligning the two-
view embeddings is the key to success. However, directly
aligning the embeddings usually causes degenerated solu-
tions [35], which means different samples are mapped to
the same points in feature space, as shown on the left side
of Fig. 1. This is often due to the lack of proper objective
functions or architectures [6, 32].

Therefore, one way is to design a suitable objective func-
tion. SimCLR [4] takes each two embeddings as one pair,
where positive pairs are views of the same images and nega-
tive pairs are composed of views of the different images. By
expanding the consistency between positive pairs and the
difference between negative pairs, models can avoid map-
ping different samples to the same points. However, such a
strategy calcuates the similarity of every two samples, and
this brings quadratic complexity. Another way is to build a
proper architecture: BYOL [16] and SimSiam [6] propose
asymmetric structures, e.g., Stop-Gradient to avoid negative
sampling. Despite their promising results and linear com-



plexity (since no pair-wise distance is required), the ratio-
nales behind these approaches are still unclear1.

To this end, we propose a novel method named ARB to
fill the gap. In detail, we maximize the mutual information
between the immediate variable generated from one view
and representations of the other view, and give a theoretical
explanation about why it could avoid degenerate solutions.
Technically, we propose to shuffle the feature and divide
the output space into several groups on feature dimension to
further reduce the complexity. In a nutshell, the highlights
of this paper are summarized as:

1) We propose a new method named ARB to avoid
collapses in contrastive learning, which is straightforward,
comprehensible and efficient (shuffle and divide groups).
Compared with other symmetric architecture, ARB only re-
quires linear order complexity of objective (negative-free).

2) We theoretically analyze the relationship between the
proposed ARB (maximize the mutual information between
the proposed immediate variables and representations) and
previous feature-wise methods [37] (maximize the consis-
tency of two views). Furthermore, we give a theoretical
analysis of how ARB could avoid degenerate solutions.

3) The experiments results on CIFAR-10, CIFAR-100,
and ImageNet show that our method can achieve higher or
be on par with previous methods. Compared with other
feature-wise contrastive methods like Barlow Twins [1,37],
our methods are much more robust to dimension size.

2. Related Works
Since our method directly aligns embeddings with the

closest group of base vectors, which is a negative-free
method, we briefly introduce the previous methods from the
perspective of whether negative samples are involved.

Negative-requiring methods. InfoNCE based meth-
ods [4, 19] usually require a large number of negative pairs
to boost the accuracy, which is hard to store. Hence,
Moco [19] proposes a memory bank module to address
this issue. Further, they propose two tricks to prevent col-
lapses, i.e., Stop-Gradient and asymmetrically update en-
coders [20]. SimCLR [4] proposes a simple yet effective
framework to learn representations, where different samples
in one mini-batch are regarded as negative pairs. Hence,
large batch size is required to boost the accuracy. Inspired
by SimCLR, Moco V2 [5] uses stronger augmentation func-
tions to increase the variance of views, which achieves
higher accuracy against SimCLR. Besides, work [35] theo-
retically analyzes the components of InfoNCE. They mod-
ify InfoNCE by trading off the alignment part and unifor-
mity part and find the key success for contrastive learning

1Note [32] provides an analysis of their learning dynamics with two-
layer models, which accounts for the reason why the two models do not
fail with trivial solutions. Yet it still remains an open problem why they
could learn informative representations.

is the alignment part. Then, lots of works focus on gen-
erating, mining hard negative pairs [22, 24, 29, 34] and hard
positive pairs [11,18] to boost the accuracy. The above work
is along the instance dimension, and Barlow Twins [37] first
calculate pair-wise correlation on feature dimension across
two views, where the pairs composed of the same features
across samples of two views are encouraged to align, while
the pairs composed of the different features are forced to
minimize to 0. VICReg [1] proposes to add instance-wise
(variance) regularization on the basis of Barlow Twins [37],
which achieves similar accuracy with Barlow Twins.

Negative-free methods. Since alignment is the key to
contrastive learning [35], one of the exploring directions is
discarding negative pairs, as firstly explored in BYOL [16].
They propose a predictor module and adopt EMA [28] algo-
rithm, stopping gradient to update encoders. SimSiam [6]
explores the key to avoiding collapses in the asymmetric ar-
chitecture empirically and finds the stop-gradient and pre-
dictor to be the answer. The work [32] replaces the en-
coder in BYOL with a two-layer model and gives a theo-
retical analysis of why the two models (online and target)
do not collapse. However, it still remains an open problem
why they could learn informative representations. Inspired
by classical whitening transformation, e.g., ZCA whiten-
ing [21], the work [13] first transforms the learned embed-
dings before calculating loss. However, the performance
is limited due to the inconsistent dimension of whitening
(feature-wise) and objective function (instance-wise).

3. Methodology
As a pure negative-free method, ARB is a symmetric

thus is more neat and efficient than previous (asymmetric)
negative-free methods [6, 16]. We will begin to describe
ARB from a previous feature-wise method [37], followed
by the framework, objectives, and other used techniques.

3.1. Preliminaries

Self-supervised Learning via Feature Decorrelation.
Departure from previous contrastive methods via instance
discrimination [4, 16, 19], decorrelation-based methods
learn representations via feature-level regularization [1, 37,
38], i.e., maximizing the correlation of the same feature
dimension of image representations from two augmented
views, and at the same time minimizing the correlation of
different feature dimensions. One typical loss for this target
refers to the Barlow Twins (BT) loss [37]:

LBT =
∑
i

(1−Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij (1)

where C = ZA⊤
ZB is the cross-correlation matrix be-

tween the representations of two views, and ZA and ZB ∈
RN×d are the column-standard-scaled embedding (0-mean
and 1/

√
N -standard deviation). N is the batch size and
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Figure 2. Framework of ARB: two augmentations in different distributions. Suppose there are only three samples in one mini-batch, both
encoder f and MLP g are weight-sharing. After obtaining embedding matrix ZA and ZB (each row represents embedding of a sample),
we first randomly shuffle the feature dimensions in each mini-batch, then divide the embedding matrix into p groups (three groups in the
figure) on the feature dimension, and finally calculate LARB in each group and the overall loss is the summation of all the (three) groups.

λ is the hyper-parameter. The loss above has a O(d2)
time/memory complexity, and usually a large feature di-
mension d is required for downstream tasks [37].

3.2. The proposed ARB

3.2.1 Nearest Orthonormal Basis

In linear algebra, the orthonormal (basis) matrix of a
d−dimensional space is a d × d square matrix Bo =
[b1, · · ·bd] whose vector are all unit vectors and orthogo-
nal to each other (i.e, B⊤

o Bo = I). We extend this concept
to non-square cases: we call Bo ∈ RN×d an orthonormal
matrix as long as B⊤

o Bo = I ∈ Rd×d. Given a standard-
scaled embedding matrix Z ∈ RN×d (e.g. the embedding
matrix), we then define its nearest orthonormal basis.

Definition 1 (Nearest Orthonormal Basis, NOB). The
nearest orthonormal basis matrix of a standard-scaled ma-
trix Z (termed as M(Z)) has the minimum l2 distance to
the input matrix, formally:

M(Z) = min
Bo

∥Z−Bo∥22 s.t. B⊤
o Bo = I (2)

When Z is full column rank (i.e., rank(Z) = d), Eq. 2 has
its close-form solution:

Theorem 1 The optimal solution of equation (Eq. 2) is
M(Z) = ZΣ− 1

2 = ZUΛ−1/2U⊤, where Σ is the cor-
relation matrix of input variables Z, i.e., Σ = Z⊤Z. U
is the eigenvector matrix, and Λ is the diagonal eigenvalue
matrix of Σ respectively (Σ = UΛU⊤).

Proof 1 Unfold Eq. 2, we have:

M(Z) = min
Bo

[
tr(Z⊤Z)− 2 · tr(Z⊤Bo) + tr(B⊤

o Bo)
]

(3)
As Z is standard-scaled, and B⊤

o Bo = I, we have
tr(Z⊤Z) = tr(B⊤

o Bo) = d = constant. Hence, the mini-
mization problem can be transformed to:

M(Z) = max
Bo

tr(Z⊤Bo) s.t. B⊤
o Bo = I (4)

Note that Z is a full-rank square matrix and Σ is its corre-
lation matrix, so we can find another matrix R ∈ Rd×d s.
t. (ZR)⊤(ZR) = I, where RR⊤ = Σ−1. Thus, ZR
is also an orthonormal matrix of the d-dimension space,
which indicates that there exists another orthonormal ma-
trix T ∈ Rd×d, s. t. BoT = ZR. Then, the target becomes:

max
T

tr(Z⊤ZRT−1) s.t. T⊤T = I (5)

where R = Σ− 1
2 = UΛ− 1

2U⊤, so we have:

tr(Z⊤ZRT−1) =tr (UΛ1/2U⊤T−1)

=
∑
i

Λ
1/2
ii (U⊤T−1U)ii

(6)

Since T−1 and U are both orthonormal, U⊤T−1U is also
an orthonormal matrix. So we have (U⊤T−1U)ii ≤ 1.
Note that U is a rotation matrix, i.e., U⊤U = I. Thus, we
can obtain the maximum of Eq. 6 if and only if T−1 = I.

Take T−1 = I , note that Bo = ZRT−1 and R =
Σ−1/2, then we have M(Z) = ZΣ−1/2 = ZUΛ− 1

2U⊤,
from this we complete the proof. □

Theorem 1 indicates that for a given full column rank
Z = {zi}Ni=1, where zi ∈ R1×d, one can always find its
nearest orthonormal base by M(Z).

3.2.2 Align Representations with NOBs

Given a batch of input images X = {xi}Ni=1, we first gener-
ate two views of the input data through random augmenta-
tion(transformation) [37], and term the two views as XA

and XB respectively. Then, we feed XA and XB to a
shared encoder fθ(·) followed by a projector gγ(·) [4, 19]
to get representations H and outputs respectively: H =
fθ(X), Z = gγ(H) ∈ RN×d. Following [1, 37, 38], the
output Z is further standardized along the batch dimension:

Z:,i =
Z:,i − µi√

Nσi

, i = 1, · · · , d (7)



where µi and σi are the mean and standard deviation of the
i-th dimension of Z respectively. Next, we calculate the
nearest orthonormal bases of the output matrices of the two
views by BA = M(ZA) and BB = M(ZB) as described
in Eq. 2. Finally, we learn representations through minimiz-
ing the distance between the output matrix of one view and
the nearest orthonormal basis matrix of the other view:

LARB = tr(∥I− (ZA)⊤BB∥22) + tr(∥I− (ZB)⊤BA∥22)
(8)

Note that our objective function Eq. 8 is essentially maxi-
mizing the similarity between the output of a view and the
orthonormal base of another view, so we call our method
Aligning Representation with Base (ARB) in this paper.

3.2.3 Towards implementations on real-world data
Non-full rank cases. In most cases, samples are fed to
models by a random mini-batch and the batch size K is
smaller than output dimensions d. In this condition, we
can’t get the closest base from M, since Σ may not be
reversible and we can not find d orthogonal vectors in K-
dimensional space. Thus, a more general solution is to find
a pseudo base [7]. Given an embedding matrix of one mini-
batch samples Z ∈ RN×d (d < N ), we calculate the cor-
relation matrix by Σ = Z⊤Z. Then, the pseudo base is:

Bpseudo = Z
[
U⊤(Λ+ λI)−

1
2U

]
(9)

where λ is a hyper-parameter (10−4 by default), and Σ =
U⊤ΛU is spectral decomposition of the correlation matrix.

3.2.4 Reduce computation complexity
As presented above, calculating the nearest base or pseudo
base requires matrix decomposition, which is cubic with
respective to the output dimension. Although this pro-
cess does not require back-propagation, it is still time-
consuming. To further reduce the complexity, we split
the d-dimension feature into p groups. For each group in
d/p-dimension space, we find its closest base through ma-
trix decomposition. However, when p is large, the strat-
egy will lose much information, i.e., features in the same
group are orthogonal, while features in different groups are
non-orthogonal. As such, the redundancy will remain in
features in different groups, i.e., the redundancy increases
with the increase of the number of groups. Hence, we pro-
pose a new technology to alleviate this phenomenon, i.e.,
shuffle the feature dimension before grouping. Consider
loss objective function of Barlow Twins [37], the cross-
correlation matrix takes O(N · d2) FLOP. Then, element-
wise MSE loss is calculated, which takes about O(d2)
FLOP. Further, backpropagation takes about O(N · d2)
FLOP. In ARB, by rotating the base Bω , it totally takes

about O(N · d2 + d3 + N2 · d) FLOP, where N ≈ d. Af-
ter applying group-wise alignment, the complexity is fur-
ther reduced to O(p · (N · (d/p)2 + (d/p)3 +N2 · (d/p))),
where d

p << d, especially for large output dimension d.
In experiments, we find that with the random-shuffle trick,
ARB improves about 4% ∼ 6% top-1 accuracy.

3.3. Intuitive analysis
It has been shown that current instance-level contrastive

learning methods [6, 16] often outperform feature-level
methods [1, 37]. Now we explain why we insist on feature
dimension rather than instance dimension, mainly in two
aspects. 1) Size of dimension and mini-batch. Follow-
ing [35], the alignment term of InfoNCE [31] (widely used
in instance-level methods [4, 19]) can be formulated as:

E(x,x+)∼ppos
[−f(x)⊤f(x+)/τ ] ≥ E(x,x+)∼ppos

[−1

τ
]

(10)
The above inequality gets equal if and only if f(x) =
f(x+). While the uniformity part [35] pulls all the em-
beddings in a hyper-sphere uniformly. We know that N
data points can not be uniformly distributed on space be-
low N +1 dimensions. Otherwise, the feature values of the
remaining dimensions will stay the same (dimension col-
lapse [27]), forcing them to be uniformly distributed. How-
ever, in ARB, we usually set d ≥ N , which is unsuitable to
apply on instance dimension. 2) Hard positives [11]. The
proposed ARB always tries to decorrelate two vectors to or-
thogonal, while some different instances should be close to
each other, i.e., hard positives. Such property of ARB may
harm the accuracy when apply on instance dimension. We
also try applying ARB on instance dimension, which we
will discuss in experiments (see ARB(ins-fea) in Table 5).

3.4. Theoretical analysis

Theorem 2 The proposed LARB in Eq. 8 is the upper
bound of the invariance term in LBT in Eq. 1. Besides,
minimizing LARB equals to minimizing both invariance and
decorrelation terms in LBT .

Proof 2 Recall the first term of LARB is tr(∥I −
(ZA)⊤BB∥2), we have:

tr((ZA)⊤BB) = tr((ZA)⊤ZBU⊤Λ
− 1

2

C U) (11)

Denote the cross correlation matrix as ΣC1, then, we have:

tr((ZA)⊤BB) = tr(V⊤ΛC1VU⊤Λ
− 1

2

C U)

≤ tr(U⊤ΛC1Λ
− 1

2

C U)
(12)

where V and ΛC1 are eigenvectors and eigenvalues of
ΣC1. Since ZA and ZB are both centered vectors, we have
(ΛC1)ii < (ΛC)ii, i.e., the proposed LARB is the upper
bound of the invariance term in LBT . Then, since BB is



orthogonal, by optimizing LARB , (ΣC1)ij will be reduced
to 0, which is consistent with the decorrelation term in LBT .
Then, we can complete the proof. □

The theorem shows the relation between LARB and LBT ,
where LARB is the upper bound of the invariance term in
LBT . Further, by maximizing the consistency between ZA

and BB , we can directly discard the decorrelation term of
LBT , in a linear complexity for objective function.

Theorem 3 The mutual information (MI) I(ZA,BB) is the
upper bound of I(ZA,ZB). Besides, maximizing the MI of
I(ZA,BB) is equivalent to maximizing I(ZA,ZB):

max
f,g

I(ZA,BB) = max
f,g

I(ZA,ZB) (13)

where Z and B are the variable of embeddings and basis.

Proof 3 The proof is based on:

I(ZA,BB) = H(BB)−H(BB |ZA)

I(ZA,ZB) = H(ZB)−H(ZB |ZA)
(14)

where H(BB) ≥ H(ZB). Consider in full-rank condition,
i.e., λ = 0 and H(ZB |BB) = H(BB |ZB) = 0, we have
I(ZA,BB) ≥ I(ZA,ZB). Besides, since I(ZA,BB) =
H(ZA) = H(BB), maximizing the MI of I(ZA,BB) is
equivalent to maximizing I(ZA,ZB). Then, consider in
non full-rank condition. We know H(BB |ZB) = 0, i.e., ZB

to BB is injective, while the inversion does not hold (due to
the bias λ). Hence, we have H(ZB) ≥ H(ZB |BB) ≥
H(BB |ZB) = 0. By the chain rule, we have:

H(BB ,ZB |ZA) = H(BB |ZB ,ZA) +H(BB |ZA)

= H(ZB |BB ,ZA) +H(ZB |ZA)
(15)

where H(BB |ZB ,ZA) ≤ H(ZB |BB ,ZA). Thus, we have
H(ZB |ZA) ≥ H(BB |ZA). Take the inequality to Eq. 14,
I(ZA,BB) ≥ I(ZA,ZB) holds. □

The above theorem indicates that when maximizing the mu-
tual information between ZA and BB , we can also maxi-
mize the mutual information between ZA and ZB .

Theorem 4 Define the consistency between two groups of
vectors as con(Z,H) = tr(Z⊤H). Then, λ is the factor to
influence the distance between input data and pseudo base.
Besides, λ is smaller, the consistency con(Z,H) is larger.

The proof is given in supplementary. Theorem 4 indicates
with smaller λ, the distance between the pseudo base and
original data will be smaller. Correspondingly, the esti-
mated mutual information between I(ZA,BB) is more ac-
curate to I(ZA,ZB) (gets equals when ZB is full-rank),
which is consistent with our experiments (see Fig. 6). Next,

we analyze the maximum consistency between representa-
tions and pseudo basis (d > N ) con(Z,Bpseudo). Since
d > N , there are at least d−N eigenvalues equal to 0 and
the maximum value of con(Bpseudo,Z) is obtained when
the column rank of Z equals to N . Then the maximum value
is ( d·N√

d+N ·λ )
−1/2, which is obtained when all the non-zero

eigenvalues equal to
√
d/N .

One of the questions is still unclear, which is why di-
rectly minimizing LARB can avoid collapse. Usually, there
are two kinds of collapses, where complete collapse means
the model maps all the input data to the same points in hy-
persphere and dimensional collapse means the data points
are not projected onto the hypersphere, but they distribute
nearly as a line in the space, making them hard to discrimi-
nate. We further give the following theoretical result.

Theorem 5 By optimizing LARB , model can avoid col-
lapses (both complete and dimensional collapses).

Proof 4 Consider the embeddings of mini-batch data, note
that the dimensional collapse is the upper bound of com-
plete collapse and if we avoid dimensional collapse, we can
avoid complete collapse. In the worst case, consider we
have already gotten the degenerate solution, i.e. zi = zj ,
where zi is the embedding of sample i. By LARB , we have:

∂LARB

∂Zi,:
= 2 · (1− (ZA

i,:)
⊤BB

i,:) ·BB
i,: (16)

where ZA
i,: is the vector composed by i-th feature values in

view A and ∂LARB

∂Zi,:
is the partial derivative of Zi,:. We have:

(
∂LARB

∂Zi,:

)⊤
∂LARB

∂Zj,:
= 0,

∥∥∥∥∂LARB

∂Zi,:

∥∥∥∥
2

+

∥∥∥∥∂LARB

∂Zj,:

∥∥∥∥
2

̸= 0

(17)
The above formulates are according to that even if
(ZA

i,:)
⊤BB

i,: = 0, (ZA
j,:)

⊤BB
j,: must be non-zero value since

BB
j,: ⊥ BB

i,:. Then, by optimizing in one step, we avoid
the collapses. In a more general condition, the two vectors
(ZA

i,:)
⊤ and (ZA

j,:)
⊤ are optimized in the vertical direction.

Thus, they can only intersect in one point in hypersphere
and if the intersection point is not the origin, we can avoid
collapse perfectly. □

4. Experiments
4.1. Experiment setup

Datasets. We evaluate the proposed method on follow-
ing datasets, as commonly used in previous self-supervised
methods [4, 6, 37].

1) CIFAR-10 and CIFAR-100 [26], two small-scale
datasets for 32 × 32 images with 10 and 100 classes, re-
spectively. 2) ImageNet-100 and ImageNet-1k [9] include
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Figure 3. Euclidean distance of embeddings, basis, loss and variance plots over 20k iteration.

Table 1. Main comparison on CIFAR-10, CIFAR-100 and ImageNet-100. Proj. and Pred. mean the output dimension in projector and
predictor. Negs. means whether to use negative pairs (either feature-wise or instance-wise). M means the number of views.

Method Proj. Pred. Negs. Complexity CIFAR-10 CIFAR-100 ImageNet-100
dim # dim # used ? (objective) Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

A
sym

m
etric

BYOL [16] 4096 256 % O(N) 92.61 99.82 70.18 91.36 80.09 94.99
DINO [3] 256 – % O(N) 89.19 99.31 66.38 90.18 74.84 92.92

SimSiam [6] 2048 512 % O(N) 90.51 99.72 65.86 89.48 77.04 94.02
MoCo V2 [5] 256 – " O(NK) 92.94 99.79 69.54 91.49 78.2 95.5
ReSSL [41] 256 – " O(N2) 90.63 99.62 65.83 89.51 76.59 94.41

Sym
m

etric

VICReg [1] 2048 – " O(N + d2) 90.07 99.71 68.54 90.83 79.22 95.06
SwAV [2] 256 – " O(NC) 89.17 99.68 64.67 88.52 74.28 92.84

W-MSE [13] 256 – % O(NM2) 88.18 99.61 61.29 87.11 69.06 91.22
SimCLR [4] 256 – " O(N2) 90.74 99.75 65.39 88.58 77.48 93.42

Barlow Twins [37] 256 – " O(d2) 87.39 99.42 57.92 85.23 67.21 90.64
Barlow Twins [37] 2048 – " O(d2) 89.57 99.73 69.18 91.19 78.62 94.72

ARB 256 – % O(d) 91.81 99.86 68.19 91.12 74.86 93.06
ARB 2048 – % O(d) 92.19 99.89 69.57 91.77 79.48 95.51

100 and 1000 classes, respectively. The datasets are well-
balanced in class distribution and the images contain an
iconic view of objects, as widely used in vision [20, 37].

Augmentation. Each input image is transformed twice
to generate two different views mentioned before. The
image augmentation pipeline is listed as follows: random
cropping, resizing to 224 × 224 (32 × 32 for CIFAR),
horizontal flipping, color jittering, converting to gray-scale,
Gaussian blurring, and solarization. The last five are applied
randomly on two views with different probabilities, which
are exactly the same as [37].

Architecture. Following recent works [4, 37], the en-
coder adopts ResNet-50 (2048 output units) or ResNet-18
(512 output units) [20] architecture without the final classi-
fication layer, followed by an MLP module. The architec-
ture of MLP is the same as [37].

Optimization. Similar to previous works [16, 37], we
use the LARS optimizer [36] on all the datasets. We use a
learning rate of 0.2 for the weights and 0.005 for the biases
and batch normalization parameters. We multiply the learn-
ing rate by batch size and divide it by 256. We use a learning
rate warm-up period of the first 10 epochs, after which we
reduce the learning rate by a factor of 1000 using a cosine
decay scheduler [23]. For CIFAR-10 and CIFAR-100, we
use single 1080 GPU. For ImageNet-100, the batch size is

set as 128 as default, and we use 8 Tesla V100 16G GPUs.
For ImageNet-1k, we evaluate ARB on 64 1080Ti GPUs
with 256, 2048 and 8192 output dimensions, respectively.
The batch size on ImageNet-1k is set 512 as default.

Evaluation. We train a linear classifier on three vision
datasets on top of fixed representations of ResNets pre-
trained by ARB. Specifically, the linear classifier is trained
for 100 epochs with a learning rate of 0.3 and a cosine learn-
ing rate scheduler. We minimize the cross-entropy loss with
SGD optimizer with momentum 0.9 and weight decay 1e-6.
In line with previous arts [4, 37], we set batch size as 256.
At the inference stage, we resize the image to 256 × 256
and center crop it to a size of 224 × 224.

4.2. Overall evaluation
Classification task. We mainly divide the contrastive

learning methods into two parts, i.e., asymmetric and
symmetric architectures. Previous methods [6, 16, 19]
with asymmetric architecture achieve state-of-the-art per-
formance against those with symmetric architecture [4, 37],
by designing stop gradient and predictor module. However,
they suffer from the lack of explainability [32]. Hence,
we mainly compare our methods with symmetric meth-
ods. Table 1 and 2 give classification results on CIFAR-
10, CIFAR-100 and ImageNet datasets with ResNet-18 as
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Figure 4. Output dim: ImageNet-100 w/ 100-epoch pre-train.

Table 2. Accuracy on ImageNet with ResNet-50.

Method Dim 50 eps 100 eps
acc@1 acc@5 acc@1 acc@5

Barlow Twins
256 45.38 70.55 52.79 77.48

2048 52.9 77.92 59.19 82.29
8192 61.02 84.16 67.74 88.33

ARB
256 49.95 75.42 58.17 80.91

2048 58.84 81.31 64.42 85.87
8192 62.05 84.49 68.21 88.91

backbone [20]. For CIFAR-10 and CIFAR-100, we set
batch size as 256 and train each method with 1,000 epochs.
For ImageNet-100, we set batch size as 128 and train each
model with 400 epochs. Thanks to the work [8], we can
quickly reproduce the results of previous methods. For
ImageNet-1k, we pre-train the encoder (ResNet-50 [20])
with 100, 400 epochs with batch size 512. On CIFAR-10,
CIFAR-100 and ImageNet-100, ARB achieves the highest
accuracy in symmetric methods. Moreover, ARB outper-
forms baseline Barlow Twins [37] 12.27% top-1 accuracy
with 256 output dimension.

4.3. Ablation study
Align base. We conduct experiments to show the pro-

posed ARB can avoid collapses and report the variance and
loss track in Fig. 3. Specifically, we search the closest basis
of each view, and report the Euclidean distance between the
two bases (second plot in Fig. 3). The track “Directly align”
is the designed baseline, which directly aligns embeddings
of two views on feature dimension. Then, we train the two
methods (directly align and align base) in 1,000 epochs,
and report the top-1 and top-5 accuracy under linear eval-
uation and KNN evaluation in Table 3. As shown in Ta-
ble 3, although directly aligning embeddings of two views
doesn’t bring complete collapses, it causes dimensional col-
lapse [38] with poor linear evaluation performance (16.98%
top-1 and 41.26% top-5 accuracy), which is consistent with
the results in [37]. Recall that the proposed ARB aligns rep-
resentations with base, which will increase the entropy and
variance of Z (shown in Theorem 2 and right plot of Fig. 3),
the top-1 accuracy gets 71.10%.

Output dimension. Since ARB is essentially a feature-
wise method (despite the introduced intermediate vari-
ables), we conduct robustness test on ImageNet-100. We
mainly compare with [37]. The reported results are repro-

32 64 128 256 512 1024
Batch Size

70

75

80

85

90

A
C

C
@

1

SimCLR
Barlow Twins
ARB

32 64 128 256 512 1024
Batch Size

70

75

80

85

90

A
C

C
@

5

SimCLR
Barlow Twins
ARB

Figure 5. Batch size: CIFAR-100 w/ 50k-iterations pre-train.

Table 3. Comparison of direct alignment and aligning base. L
means linear evaluation and k in KNN model is set as 5.

Method L@1 L@5 KNN@1 KNN@5
Directly align 16.98 41.26 1.10 10.20
Align base 68.19 91.12 71.10 89.60

duced from their official code under the same setting. We
set the max epoch 100 and batch size 128. The projector
dimension is set as 2048-2048-OutDim, where OutDim
is from 32 ∼ 4096. We find that Barlow Twins is heavily
influenced by output dimension, while our method is much
more robust (Fig. 4). In top-1 accuracy, ARB outperforms
Barlow Twins by 28.19% with 32-dimensional output, and
still outperforms Barlow Twins by 3.1% with a rather large
output dimension of 4096.

Batch size. In line with [4, 37], we test the robustness
under small batch sizes. We train all methods with the same
50K iterations. Fig. 5 shows the top-1 and top-5 accuracy
of SimCLR, Barlow Twins, and our ARB. SimCLR is heav-
ily influenced by batch size, which has also been verified
in [4, 6]. Feature-wise methods as Barlow Twins and ARB
are more robust to batch size, and our method can get higher
accuracy than [37] under all the tested batch sizes.

Groups. As mentioned above, we design shuffle and
grouping operation on feature dimension to reduce the com-
plexity, which may also bring negative impact (feature in
different groups may be not orthogonal), we conduct ex-
tensive experiments on CIFAR-100 dataset to analyze the
effect of the number of groups, which are shown in Fig. 6.
We set the dimension of projection as 2048-2048-2048. The
number of groups and batch size are both set as 256. We find
that the accuracy with 8 groups is better than a single group,
which may be because, in 256-dimension space, we can not
find the 2048 orthogonal vectors. However, if we divide the
2048 dimensions into 8 groups, where each group is a 256-
dimension space. We can get unbiased orthogonal vectors
(if the embedding matrix Z is full-rank). We also find with
too many groups (256), the accuracy decreases with a large
range, which is because features in different groups bring
much redundancy. After applying the shuffle operation, the
accuracy will drop at a much slower rate.

Convergence rate. We show accuracy curves during
training in Fig. 7. The experiments are conducted on
CIFAR-100, where we set the max epochs as 100 and use
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Figure 7. Comparison of convergence rate.

cyclic cosine annealing learning rate scheduler [23], which
is commonly used in previous SSL methods [4, 37]. Com-
paring our method with symmetric methods [4, 37] in ev-
ery 10 epochs. ARB achieves 47.94% top-1 accuracy at 30
epochs, while the best top-1 accuracy of SimCLR and Bar-
low Twins (90 and 100 epochs) are 46.08% and 47.35%.

Loss function. We alter our loss in Eq. 8 in several ways
to test the necessity of each term (standard scale, batch nor-
malization) and evaluate if the negative samples can im-
prove the accuracy. Experimental results are reported in
Table 4. We consider using MSE loss with l2 normal-
ized embeddings on feature dimension and adding the off-
diagonal term in Barlow Twins [37]. We also try remov-
ing the Batch Normalization module in MLP. For the off-
diagonal term, we first calculate the cross-correlation matrix
by CA = (ZA)⊤BB , CB = (ZB)⊤BA. Then, we alter the
ARB loss to Barlow Twins’ loss in Eq. 1, and the accuracy
is slightly reduced. This proves our method does not require
pair-wise decorrelation. For l2 normalization, we first stan-
dardize the embeddings ZA. Then, we use the function M
to find the closest base, and calculate l2 normalized embed-
dings and base, respectively. Finally, we perform MSE loss
on the normalized matrices. By normalization, the accuracy
is slightly reduced, being consistent with [37].

Instance dimension. Although the optimal solution
of instance-wise methods is not orthogonal representations
(Sec. 3.3), we also try applying our method on instance
dimension. Table 5 gives the accuracy of applying ARB
on both instance and feature dimensions, where ARB (fea)
gets higher accuracy than ARB (ins) on both CIFAR-10 and
CIFAR-100 datasets. One possible reason is that, our ARB
applied on instance dimension always tries to align instance
representations to instance-wise base, thus requiring all in-
stances to be orthogonal to each other, which may harm the
representation learning process when facing hard positive
pairs that should be as close as possible in the feature space.

Relation to Barlow Twins [37]. ARB learns representa-

Table 4. Exploration on losses (ImageNet-100 linear evaluation
accuracy with 400-epoch pre-training). BN: batch normalization.

Method Top-1 Top-5
ARB (standard version) 79.48 95.51
Add off-diagonal 74.18 92.91
No BN in MLP 79.10 94.69
No BN in MLP w/o normalization 64.18 88.16
MSE loss after ℓ2 normalization 69.12 91.08

Table 5. Align on instance or feature dimensions (linear evalua-
tion accuracy with 1k-epoch pre-training).

Method Dimension CIFAR-10 CIFAR-100
Top-1 Top-5 Top-1 Top-5

ARB (ins) 256 89.17 99.29 65.59 89.81
ARB (fea) 256 91.81 99.86 68.19 91.12
ARB (ins) 2048 89.31 99.26 65.36 89.56
ARB (fea) 2048 92.19 99.89 69.57 91.77

tions by aligning embeddings of one view with the searched
base of the other view. It can achieve both invariance and
decorrelation as in Barlow Twins with linear complexity.
Intuitively, ARB only requires alignment, which makes it
more robust to output dimension.

Relation to SimSiam [6]. The intuition behind Sim-
Siam is maximizing the consistency between h(zAi ) and zBi ,
where h indicates the predictor module. Compared with
SimSiam, ARB replaces the predictor module to function
M. Note that M has no parameters to optimize, which
makes our method more scalable (less storage).

5. Conclusion
We have presented ARB (Align Representations with

Base), which aligns the learned embeddings to intermedi-
ate variables for self-supervised learning. Compared with
previous symmetric methods, ARB does not require pair-
wise decorrelation, resulting in a linear order complexity
(objective function). We theoretically analyze the relation-
ship between Barlow Twins [37] and ARB, and show why
our method can avoid collapses. Besides, we conduct ex-
periments on CIFAR-10, CIFAR-100, and ImageNet. The
results show that ARB can achieve higher accuracy than
previous symmetric methods [4, 19, 37]. Results of abla-
tions show that ARB is more robust to dimension size than
previous methods [4, 37] with a faster convergence rate.

ARB currently can only be used on feature dimension.
We hope to extend it on instance dimension. Besides, to
find the closest base, we have to calculate the inverse matrix,
which is time-consuming and worthy of improvement.
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