
M-Mix: Generating Hard Negatives via Multi-sample Mixing for
Contrastive Learning

Shaofeng Zhang

Shanghai Jiao Tong University

Shanghai, China

sherrylone@sjtu.edu.cn

Meng Liu

Shanghai Jiao Tong University

Shanghai, China

meng.liu@sjtu.edu.cn

Junchi Yan
∗

Shanghai Jiao Tong University

Shanghai, China

yanjunchi@sjtu.edu.cn

Hengrui Zhang

Shanghai Jiao Tong University

Shanghai, China

sqstardust@gmail.com

Lingxiao Huang

Huawei TCS Lab

Shanghai, China

huanglingxiao2@huawei.com

Xiaokang Yang

Shanghai Jiao Tong University

Shanghai, China

xkyang@sjtu.edu.cn

Pinyan Lu

Shanghai University of Finance and

Economics

Huawei TCS Lab

Shanghai, China

Lu.pinyan@mail.shufe.edu.cn

ABSTRACT
Negative pairs, especially hard negatives as combined with common

negatives (easy to discriminate), are essential in contrastive learn-

ing, which plays a role of avoiding degenerate solutions in the sense

of constant representation across different instances. Inspired by re-

cent hard negative mining methods via pairwise mixup operation in

vision, we propose M-Mix, which dynamically generates a sequence

of hard negatives. Compared with previous methods, M-Mix mainly

has three features: 1) adaptively choose samples to mix; 2) simul-

taneously mix multiple samples; 3) automatically assign different

mixing weights to the selected samples. We evaluate our method

on two image datasets (CIFAR-10, CIFAR-100), five node classifi-

cation datasets (PPI, DBLP, Pubmed, etc), five graph classification

datasets (IMDB, PTC_MR, etc), and two downstream combinato-

rial tasks (graph edit distance and node clustering). Results show

that it achieves state-of-the-art performance under self-supervised

settings. Code is available at: https://github.com/Sherrylone/m-mix.

CCS CONCEPTS
• Computing methodologies→Mixture modeling.

∗
S. Zhang, M. Liu, J. Yan, X. Yang are also with MoE Key Lab of Artificial Intelligence, AI

Institute, Shanghai Jiao Tong University, Shanghai, China. Junchi Yan is the correspon-

dence author. This work was supported by National Key Research and Development

Program of China (2020AAA0107600), Shanghai Municipal Science and Technology

Major Project (2021SHZDZX0102), NSFC (U19B2035), and fund from Huawei Inc.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00

https://doi.org/10.1145/3534678.3539248

KEYWORDS
Self-supervised learning, Graph neural network, Contrastive learn-

ing, Hard sample mining

ACM Reference Format:
Shaofeng Zhang, Meng Liu, Junchi Yan, Hengrui Zhang, Lingxiao Huang,

Xiaokang Yang, and Pinyan Lu. 2022. M-Mix: Generating Hard Negatives

via Multi-sample Mixing for Contrastive Learning. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’22), August 14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3534678.3539248

1 INTRODUCTION
Graph neural networks (GNNs) [21, 45] reconcile the expressive

power of graphs in modeling interaction with the unparalleled

capacity of deep models in learning representations. They pro-

cess variable-size permutation-invariant graphs and learn low-

dimensional representations through an iterative process of trans-

ferring, transforming, and aggregating the representations from

topological neighbors. However, the classic GNN training [21] calcu-

lates the objective function only from the costly and limited labeled

nodes, ignoring the information contained in large amounts of un-

labeled nodes. To address this issue, recent studies [12, 53, 61] intro-

duce contrastive learning [13, 57, 58] into self-supervised learning

on graphs. In general, graph-level contrastive methods [4] require

a large number of negative samples to avoid degenerate solutions

(i.e. the trained model projects all samples the identical representa-

tion [13]) and boost the performance. However, such a large number

of negatives are computational expensive and hard to store. Fortu-

nately, mining or generating a compact set of hard negatives [19, 23]

is an effective way to reduce the number of negatives and improve

the prediction accuracy, which is important for contrastive learning.

Existing hard negative mining methods are almost from com-

puter vision, and they can be generally divided into two categories:

(1) Adversarial based methods [17] and (2) Mixing based meth-

ods [18, 19, 23, 44]. Adversarial-based methods update negative

https://github.com/Sherrylone/m-mix
https://doi.org/10.1145/3534678.3539248
https://doi.org/10.1145/3534678.3539248

KDD ’22, August 14–18, 2022, Washington, DC, USA Shaofeng Zhang et al.

samples before updating encoder networks [14], i.e., maximize the

similarity between negative pairs before updating encoders, and

such a strategy is basically inspired by adversarial training [8].

Mixing-based methods are inspired by classical data augmenta-

tion methods namely mixup [55], which in general is used to help

classify samples close to the boundary. In contrastive learning, mix-

ing based methods generate hard negatives by mixing the positive

samples and negative samples with pre-defined mixing weights,

which can mainly lead to two problems: 1) due to sampling the

mixed negative samples randomly [19] and using static pre-defined

mixing weight, the information of similarity between two samples

will be ignored
1 2) Mix operation is conducted between every two

samples, limiting the generated negatives’ difficulty for contrastive

learning. In this paper, we propose M-Mix, which generates hard

negatives via mixing more than two samples with different weights.

The hope is to expand the mixing scheme for higher difficulty.

The highlights of this paper are summarized as follows.

1) We propose M-Mix to mine hard negatives, which mixes

multiple samples and assigns different mixing weights dynamically.

To our best knowledge, this is the first attempt to mix multiple

samples (beyond two samples) in contrastive learning.

2) We propose to emphasize mixing weights between similar

samples whose efficacy of generating more difficult hard negatives

than by random, is grounded by our theoretical analysis (see Theo-

rem 3.1). Specifically, we devise a diversity objective function, to

increase the difficulty of generated negatives, which is empirically

shown can meanwhile improve the stability in terms of prediction.

3)We further design twomodules to complete themixingmethod:

named M-Mix-wp and M-Mix-op, where the former utilizes the

structural information (adjacency matrix) for denoising and increas-

ing prediction accuracy for graph-related tasks. The latter does not

require structural information, which can be applied in vision to

improve the representation ability.

4) We empirically show that it causes little accuracy drop on

graph data, by discarding the non-linear projection head [4], and

performing direct contrasts in output space. We further theoreti-

cally show (see Theorem 3.2) the efficacy of this simplification and

particularly both the analysis and empirical sensitivity study of

different combinations of sample size and output dimension.

5)We adapt and incorporate M-Mix into the frameworks of both

SimCLR [4] and MVGRL [12], to enhance their negative sampling

for training, and extensive experimental results on both vision

and graph datasets show that the resulting approaches outperform

most of the state-of-the-art methods in self-supervised learning.

The source code and trained models will be made public available.

2 RELATEDWORK
This paper explores hard negatives mining by mixing multiple sam-

ples, especially in the context of contrastive learning. We discuss

recent progress in contrastive learning in both vision and graph

domains, as well as hard negatives mining methods.

Contrastive learning in vision. Contrastive learning has be-
come a popular paradigm for self-supervised representation learn-

ing on various kinds of data. It works by discriminating positive

pairs (two views of the same input image) from negative ones (views

1
In Theorem 3.1, we will theoretically show that two samples with larger similarity

should be sampled with higher probability and mixed with larger weights [23].

of different images). As a pioneering work, CPC [27] proposes In-

foNCE objective to discriminate positive pairs and negative pairs

from sequential data. CMC [38] generalizes CPC to multi-view set-

tings, and DIM [16] introduces information theory interpretation of

contrastive learning through local-global mutual information maxi-

mization. Later works mainly generate two views of the same input

through random, multiple-stage data augmentations like flipping,

cropping, resizing, rotation, etc [4, 16]. To address the issues of

storing a large number of negative samples, MoCo [13] adopts the

memory bank strategy and uses a momentum-based technique to

update two encoders asynchronously. SimCLR [4] directly regards

other samples within the same training batch as negatives. Recent

works have been paying attention to negative-sample free methods

with asymmetric structures [9], or hard negatives [17].

Hard negative mining in contrastive learning. Hard nega-

tives mining refers to generating negative pairs, which are difficult

to discriminate. We divide previous hard negatives mining meth-

ods into two categories. 1) Gradient-based. Inspired by adversarial

training [8], Adco[17] tries generating hard negatives via adversar-

ial optimization. In detail, the negatives in the memory bank [13]

are first optimized by maximizing contrastive objective, then the

encoder network [14] is optimized by minimizing contrastive objec-

tive, where the two steps run alternately. 2) Mixing based. Inspired

by classical augmentation method Mixup [55] and its variants [33],

MoCHi [18] proposes mixing negative samples and positive samples

in feature space, where for each positive embedding, MoCHi first

finds the most similar negative sample and mixes the two samples’

embeddings. Then, 𝑖-mix [23] proposes mixing two samples in in-

put space, where they are first mixed before feeding to the encoder.

The concurrent work DACL [44] uses the same idea. Further, DACL

conducts experiments on both graph and image datasets.

Contrastive learning in graph. Earlyworks includingDGI [42]
and InfoGraph [37] adopt the idea of local-global contrastive ob-

jective [16] to node/graph representation learning respectively by

contrasting node-graph pairs. Then, MVGRL [12] uses fixed diffu-

sion operations such as heat kernel and Personalized PageRank to

generate views of the original graph. Then, the local-global con-

trastive objective is adopted and MVGRL achieves state-of-the-art

performance on both node classification and graph classification

tasks. Inspired by MoCo, GCC [31] generates node views through

sub-graph sampling with random walks, where the different sub-

graphs are taken as negatives. Then, GRACE [61] and its variant

GCA [62] introduce SimCLR to graph, and different nodes are taken

as negatives. Depart the success of hard negative mining in vision,

hard negatives in graph contrastive learning has been little explored.

3 THE PROPOSED M-MIX
In this section, we present M-Mix in detail, starting with prelimi-

naries, followed by the two designed modules (M-Mix-op for vision

and M-Mix-wp for graph) for generating hard negative samples, as

well as the training framework and overall objective function.

3.1 Preliminaries
Graph neural network. Denote G = {V, 𝜉} as a graph, where
V = {𝑣1, 𝑣2, · · · 𝑣𝑁 } and 𝜉 ∈ V × V represent the node set and

the edge set, respectively. Let X ∈ R𝑁×𝐹
be the feature matrix and

M-Mix: Generating Hard Negatives via Multi-sample Mixing for Contrastive Learning KDD ’22, August 14–18, 2022, Washington, DC, USA

Augmentation

Revised
module

MLP

𝒥!"#$

Similarity

Scale

Revise

Softmax

Weighted mixing

……

……

Readout Readout

Scale
Softmax

GNN layer

𝒥%&'()

𝒎-mix

Figure 1: Framework (left) of the proposed M-Mix, where the revised module is discussed in “bridge mixing with prior
knowledge" and we provide two different revised modules. Green and red dash lines in left figure denote mixing weights 𝜆𝑖 ≠ 0

and 𝜆𝑖 = 0, respectively. The blue dash line in the right figure means that only M-Mix-wp uses the prior knowledge while
M-Mix-op doesn’t. For graph classification, we additionally add graph level contrastive objective function in Eq. 11.

A ∈ R𝑁×𝑁
be the adjacency matrix, where x𝑖 ∈ R𝐹 is the node

feature of 𝑣𝑖 and A𝑖 𝑗 = 1 if edge (𝑣𝑖 , 𝑣 𝑗) ∈ 𝜉 . For self-supervised

learning without node labeling in G, it aims to learn a GNN encoder

𝑔𝜃 (X,A), which takes graph features and adjacency matrix as input,

and outputs node/graph semantic embeddings. Generally, GNN

learns node representations by aggregating the features of their

neighborhood nodes. Formally, we define the 𝑙-th layer of GNN is:

z(𝑙)
𝑖

= 𝐶𝑂𝑀 (𝑙)
(
z(𝑙−1)
𝑖

, 𝐴𝐺𝐺 (𝑙)
({
(z(𝑙−1)
𝑖

, z(𝑙−1)
𝑗

) : 𝑗 ∈ N (𝑖)
}))

(1)

where z(𝑙)
𝑖

is the hidden representation of node 𝑖 at the 𝑙-th layer, and

z(0)
𝑖

= x𝑖 . 𝐶𝑂𝑀 (·) and 𝐴𝐺𝐺 (·) are COMBINE and AGGREGATE

functions respectively. N(𝑖) represents the neighborhoods of node
𝑣𝑖 . Note that the information ofN(𝑖) is included in adjacencymatrix

A. On graph-level tasks, a READOUT function will be adopted to

summarize all the nodes’ representations.

Mixup.There aremainly two kinds ofmixup: Geometric-Mixup [59]

and Binary-Mixup [55], where the former creates a new sample

corresponding to sample x by taking its weighted-geometric mean

with another randomly chosen sample x̃. Then the new sample is

created by x+ = x𝜆 x̃1−𝜆 , where 𝜆 is the pre-defined value. The later

one creates new sample by x+ = x𝜆 ⊙ m + x̃ ⊙ (1 −m), where m
means a binary mask from Bernoulli distribution. In line with the

previous method [18], we mainly discuss the later kind of mixing.

3.2 Hard Negatives via Multi-Sample Mixing
Multi-sample mixing. Given a set of input node features X =

{x1, x2, · · · , x𝑁 }. Through a GNN encoder, we can get the embed-

dings Z = {z1, z2, · · · , z𝑁 }, where Z ∈ R𝑁×F′
. 𝑁 and F ′

mean

samples size and feature dimension, respectively. Then, for multi-

sample mixing, we define a set of mixing weights 𝜆 = {𝜆𝑖 }𝑁𝑖=1, and
the generated new sample ẑ𝑖 becomes:

ẑ𝑖 = 𝜆1z1 + 𝜆2z2 + · · · + 𝜆𝑁 z𝑁 =

𝑁∑︁
𝑗

𝜆 𝑗 z𝑗 , 𝑠 .𝑡 .

𝑁∑︁
𝑖

𝜆𝑖 = 1 (2)

In the previous methods [18, 55], 𝜆 can be statically pre-defined

or randomly sampled from Bernoulli distribution, which we argue

may not be able to effectively mine the hard negatives completely

(we also set the baseline under this condition in the ablation study).

Theorem 3.1. (Relation of hard negative mining andmixing
weights). Given two negative pairs (z𝑖 , z𝑗) and (z𝑖 , z𝑘), which satis-
fiesH(z𝑖 , z𝑗) > H(z𝑖 , z𝑘) andH(·, ·) is a similarity metric function,
assign larger mixing weight to pair (z𝑖 , z𝑗) than (z𝑖 , z𝑘) will generate
more discriminative negative pair.

Proof of Theorem 3.1

Proof. Given two negative pairs (z𝑖 , z𝑗) and (z𝑖 , z𝑘), where z𝑖 is
the 𝑖-th sample’s embedding. Denote 𝜆𝑖 as the mixing weight of z𝑖 .
For simplicity, we consider the dot product as the similarity metric

function. For multi-sample mixing, we have that ẑ𝑖 =
∑
𝑖 𝜆𝑖z𝑖 . Then,

the similarity of mixed sample and the original sample is:

H(ẑ𝑖 , z𝑗) = (
∑︁
𝑖

𝜆𝑖z𝑖)⊤z𝑗 =
∑︁

𝑖≠𝑗,𝑖≠𝑘

(𝜆𝑖 · z⊤𝑖 z𝑗) + 𝜆 𝑗 · z⊤𝑗 z𝑗 + 𝜆𝑘z
⊤
𝑘
z𝑗

(3)

where the

∑
𝑖≠𝑗,𝑖≠𝑘 (𝜆𝑖 · z⊤𝑖 z𝑗) is irrelevant to negative pairs (z𝑖 , z𝑗)

and (z𝑖 , z𝑘). Thus, we assume

∑
𝜆𝑖 ,𝑖≠𝑗,𝑖≠𝑘 is a constant. Now we

consider another group of mixing weights (𝜆′
1
, · · · , 𝜆′

𝑁
), which

satisfies 𝜆 𝑗 = 𝜆′
𝑘
and 𝜆𝑘 = 𝜆′

𝑗
(Note that the reason why we consider

this condition is for any group (𝜆′
𝑖
), we can find the corresponding

group (𝜆𝑖), which can satisfy this condition). We have:

H(ẑ′𝑖 , z𝑗) = (
∑︁
𝑖

𝜆′𝑖 z𝑖)
⊤z𝑗 =

∑︁
𝑖≠𝑗,𝑖≠𝑘

(𝜆′𝑖 · z
⊤
𝑖 z𝑗) + 𝜆′𝑗 · z

⊤
𝑗 z𝑗 + 𝜆′

𝑘
z⊤
𝑘
z𝑗

H(ẑ′𝑖 , z𝑘) = (
∑︁
𝑖

𝜆′𝑖 z𝑖)
⊤z𝑘 =

∑︁
𝑖≠𝑗,𝑖≠𝑘

(𝜆′𝑖 · z
⊤
𝑖 z𝑘) + 𝜆′𝑗 · z

⊤
𝑗 z𝑘 + 𝜆′

𝑘
z⊤
𝑘
z𝑘

(4)

Recall the z are 𝑙2 normalized embedding, i.e., z⊤z = 1. Thus, we can

obtainH(ẑ𝑖 , z𝑗) > H(ẑ′
𝑖
, z𝑗). ForH(ẑ𝑖 , z𝑗) andH(ẑ′

𝑖
, z𝑘), since we

have 𝜆 𝑗 = 𝜆′
𝑘
and 𝜆 𝑗 > 𝜆𝑘 , we can get 𝜆𝑘z⊤𝑘 z𝑗 > 𝜆′

𝑗
· z⊤

𝑗
z𝑘 . Finally,

we can getH(ẑ𝑖 , z𝑗) > 𝑚𝑎𝑥 (H (ẑ′
𝑖
, z𝑗),H(ẑ′

𝑖
, z𝑘)), i.e., we generate

a more difficult negative pair by assigning similar instances with

larger mixing weights. □

Quantification of mixing weights. Theorem 3.1 says similar

negatives pairs should be assigned larger mixing weight. Thus, to

quantify the mixing weights, we design two methods: one to learn

mixing weights in original space and the other is in space after

KDD ’22, August 14–18, 2022, Washington, DC, USA Shaofeng Zhang et al.

linear projection. For the former case, we can quantify the mixing

weights in each iteration by:

𝜆 𝑗 =
exp(H (z𝑖 , z𝑗))∑
𝑘 exp(H (z𝑖 , z𝑘))

𝑠 .𝑡 . 0 <= 𝑘 <= 𝑁 (5)

whereH means a similarity metric function. In this paper, we use

dot product after 𝑙2 normalization. This definition is simple yet

shown empirically effective in our experiments. We denote the

above method as𝑚𝑜-mix. However, the similarity is often mea-

sured in semantic space rather than in the original space. Besides,

the definition in Eq. 5 ignores homogenization [40], i.e., although

two instances z𝑖 and z𝑗 are similar in original space, but the mix-

ing weights of z𝑖− > z𝑗 and z𝑗− > z𝑖 may be different in many

cases [21, 41]. Hence, we propose another approach to quantify

mixing weights in two different spaces as follow:

𝜆 𝑗 =
exp(H (z⊤

𝑖
p𝑚, z⊤

𝑗
p𝑛))∑

𝑘 exp(H (z⊤
𝑖
p𝑚, z⊤

𝑘
p𝑛))

𝑠 .𝑡 . 0 <= 𝑗 <= 𝑁 (6)

where p𝑚 and p𝑛 are two learnable weights. By the two learnable

weights with different values, the above issue can be mitigated. We

denote the definition in Eq. 6 as𝑚𝑝-mix.
Reduce self-mixing weights. Recall we aim to increase the

mixing weights between similar negative pairs. However, mixing

weight of the sample itself is also an important parameter. Take an

example, for z𝑖 in Eq. 2, if 𝜆𝑖 is very large (correspondingly, different
𝜆 𝑗 will be very small), the hard negatives may not be generated. To

address this issue, we pertinently propose two methods targeted

to𝑚𝑜-mix and𝑚𝑝-mix. For𝑚𝑜-mix, it directly computes the simi-

larity of original space, so we directly set the 𝜆𝑖 = 𝐶 , where 𝐶 is a

pre-defined value. Correspondingly, the mixing weights of other

instances are computed as:

𝜆 𝑗 =
(1 −𝐶) exp(H (z𝑖 , z𝑗))∑

𝑘 exp(H (z𝑖 , z𝑘))
𝑠 .𝑡 . 0 <= 𝑗 <= 𝑁, 𝑗 ≠ 𝑖 (7)

While𝑚𝑝-mix is more flexible than𝑚𝑜-mix, as𝑚𝑝-mix has two

learnable weights to trade-off. We design a new diversity objective

to reduce the mixing weights of the instance itself as follow:

L𝐷𝑖𝑣 = − 1

𝑁

∑︁
𝑖

(
z⊤
𝑖
p𝑚

∥z⊤
𝑖
p𝑚 ∥2

−
z⊤
𝑖
p𝑛

∥z⊤
𝑖
p𝑛 ∥2

)
2

= 2·
(z⊤
𝑖
p𝑚)⊤ (z⊤

𝑖
p𝑛)

∥z⊤
𝑖
p𝑚 ∥2∥z⊤𝑖 p𝑛 ∥2

−2

(8)

By the diversity objective function, we project features into two

diversified spaces, reducing self-mixing weights.

Bridge mixing with prior knowledge. Although𝑚𝑜-mix and

𝑚𝑝-mix are comprehensive enough, there are still two practical is-

sues to consider. First, for each sample, we will compute the similar-

ity in the original space or projected space of 𝑁 − 1 other instances,

which is computational and expensive; Second, each generated

new sample is mixed by all the old instances, which may bring

much noise. To address these issues, we further design two revised

modules. 1) Utilize the prior knowledge of the adjacency matrix.

Usually, nodes and their’ neighbors have some similar properties,

which makes them more similar than other nodes. Thus, one of the

practical solutions is for each node, narrowing down the mining

scope of mixing to corresponding neighbor nodes and we denote

this method M-Mix-wp (with prior). 2) Pre-define a threshold 𝜃 ,

and if H(z𝑖 , z𝑗) < 𝜃 or H(z⊤
𝑖
p𝑚, z⊤

𝑗
p𝑛) < 𝜃 , we set 𝜆 𝑗 = 0 and

we denote this method M-Mix-op (without prior). Although both

two revised modules can solve the mentioned problems, M-Mix-wp

achieves better performance than M-Mix-op (due to prior knowl-

edge). However, In the vision domain, there is no prior knowledge

of the adjacency matrix. Thus, we can only use the M-Mix-op for

image data. We denote M-Mix-wp as M-Mix later.

Relation to GAT. Our M-Mix is somewhat similar to GAT [41],

since both M-Mix and GAT use similarity to re-weights. We clarify

the differences between them here. 1) Methodology, GAT requires

the structural information (adjacency matrix), while M-Mix-op

doesn’t. This also makes M-Mix-op can be applied in vision and

other domains, while GAT can’t. Besides, the diversified objective is

proposed to reduce the mixing weights of the node itself. 2) Tech-
nology, GAT uses concatenate operation and a learnable weight

to calculate similarity, which aims to increase the representation

ability of GAT, while both 𝑚𝑝-mix-op and 𝑚𝑝-mix-wp directly

adopt normalized dot product in original space or projected space,

which aims to generate more difficult negative pairs. We also give

experimental comparison between GAT and𝑚𝑝-mix in Table 8.

3.3 Framework and Objective
For graph G = (X,A), we first generate two views G𝑎 = (X𝑎,A𝑎),
G𝑏 = (X𝑏 ,A𝑏) by graph augmentation. Then, take the generated

views to GNN encoder 𝑓 , we can obtain the node representations

of two graph views Z𝑎 , Z𝑏 . Then, for branch Z𝑎 , we generate hard
negatives Ẑ𝑎 by the proposed M-Mix followed an MLP module in

graph datasets. For node 𝑖 in view 𝑎, the node-level objective is:

L𝑖𝑛𝑓 𝑜−𝑁 (𝑔(ẑ𝑎𝑖))

= − log

𝑒H(𝑔 (ẑ𝑎
𝑖
),z𝑏

𝑖
)/𝜏∑𝑁

𝑗=1, 𝑗≠𝑖 𝑒
H(𝑔 (ẑ𝑎

𝑖
),𝑔 (ẑ𝑎

𝑗
))/𝜏 + ∑𝑁

𝑗=1 𝑒
H(𝑔 (ẑ𝑎

𝑖
),z𝑏

𝑗
)/𝜏

,
(9)

where 𝑔 denotes the MLP module, as commonly used in previous

methods e.g. [9]. The objective is similar to view 𝑏.H(·, ·) means

the similarity metric function between two vectors (should be the

same with H in Eq. 5 and Eq. 6), and 𝜏 denotes the temperature

hyper-parameter [4]. The overall objective is formulated as:

J𝑛𝑜𝑑𝑒 (G) =
1

2𝑁

∑︁
𝑖

[
L𝑖𝑛𝑓 𝑜−𝑁 (ẑ𝑎𝑖) + L𝑖𝑛𝑓 𝑜−𝑁 (z𝑏𝑖)

]
+ L𝑑𝑖𝑣 (10)

The above objective can capture local information (node-level).

While for graph level tasks (graph classification, graph edit dis-

tance), we need global information (graph-level). Hence, we de-

sign graph-level contrastive objectives. Given 𝑀 graphs, denote

the graph representation matrix as H = {h1, h2, · · · , h𝑀 }, where
H ∈ R𝑀×F′

. The objective can be formulated as:

J𝑔𝑟𝑎𝑝ℎ = − 1

𝑀

𝑀∑︁
𝑖=1

log

𝑒H(h𝑎
𝑖
,h𝑏

𝑖
)∑

𝑗, 𝑗≠𝑖 𝑒
H(h𝑎

𝑖
,h𝑎

𝑗
) + ∑

𝑗 𝑒
𝑠𝑖𝑚 (h𝑎

𝑖
,h𝑏

𝑗
)
+ J𝑛𝑜𝑑𝑒 (G𝑖)

(11)

3.4 Theoretical Analysis on Dimensions
Since we discard the projection head in our framework, here we

give theoretical analysis on how to choose the output dimensions

and sample sizes from the screening variables perspective [46].

Theorem 3.2. (Suitable output dimension without projec-
tion head). DenoteY ∈ R𝑁×U as the one-hot label matrix, whereU

M-Mix: Generating Hard Negatives via Multi-sample Mixing for Contrastive Learning KDD ’22, August 14–18, 2022, Washington, DC, USA

is the number of class. Assume the output dimension is large enough
in the sense F ′ > 𝑁 . When U << 𝑁 < F ′ which mostly holds in
practice, then for any 𝛿 > 0 and 𝐶 > 0, if the sample size satisfies:

𝑁 >
𝜇2

𝐶

(
log

(
7 + 1

𝑁

)
+ 2 logF ′ − log𝛿

)
, (12)

then with probability at least 1 − 𝛿 , Φ = W𝑍 − 2𝜏−1∥W𝜖 ∥∞𝐼F′

is restricted diagonally dominant with sparsity 𝑠 , where W is the
least-square projection 𝑍⊤ (𝑍𝑍⊤). 𝜖 is learned noise in output space.

Proof. Split the infoNCE by numerator and denominator parts:

L𝑖𝑛𝑓 𝑜 = E(𝑥,𝑦)∼𝑝𝑝𝑜𝑠 [−𝑓 (𝑥)
⊤ 𝑓 (𝑦)/𝜏]+

E (𝑥,𝑦)∼𝑝𝑝𝑜𝑠
{𝑥−
𝑖
}𝑁
𝑖=1

∼𝑝𝑑𝑎𝑡𝑎

[
log(𝑒 𝑓 (𝑥)⊤𝑓 (𝑦)/𝜏 +

∑︁
𝑖

𝑒 𝑓 (𝑥)
⊤ 𝑓 (𝑥−

𝑖)/𝜏)
]
(13)

Followed by SimCLR [4], the L𝑖𝑛𝑓 𝑜 is equal to pulling embedding

to F ′
hyper-sphere uniformly. We consider contrastive embedding

in both orthogonal solution (optimal) and non-orthogonal solution.

For orthogonal solution, we have I𝑖≠𝑗Z⊤
𝑖
Z𝑗 = 0 and {Z⊤

𝑖
Z𝑖 =

1}𝑁
𝑖=0

. For linear classification or linear regression, we haveW =

Z⊤ (ZZ⊤)−1. TakeW toΦ, we can obtainΦ = 𝐼F′−2𝜏−1𝜂𝐼F′ , where

Φ is the diagonal matrix, then, we can complete the proof. Consider

in non-orthogonal solution, if we have:

min

𝑖
|Φ𝑖𝑖 | > 2𝑠𝜌 max

𝑖 𝑗
|Φ| + 2𝜏−1∥Z⊤ (ZZ⊤)−1𝜖 ∥∞ (14)

Then, the proof is finished because Φ − 2𝜏−1∥Z⊤ (ZZ⊤)−1𝜖 ∥∞ is

already a restricted diagonally dominant matrix. From Lemma 3

and 4 of [46], we can obtain a union bound:

𝑃

(
max

𝑖≠𝑗
|Φ| > 𝑐4𝑘𝑡

√
𝑁

F ′

)
≥ 5(𝑝2 − 𝑝)−𝐶𝑁 + 2(𝑝2 − 𝑝)−𝑡

2/2
(15)

𝑃 (∥W𝜖 ∥)∞ ≤
2𝜎

√
𝑐2𝑘𝑡

√
𝑁

(1 − 𝑐−1
0
)F ′ < 4F ′𝑒−𝐶𝑁 + 2F ′𝑒−𝑡

2/2
(16)

where 𝑡 is any constant which satisfies 𝑡 > 0, 𝑐𝑖 is some constants

which satisfy 𝑐0 > 1, 0 < 𝑐1 < 1 < 𝑐2 and 𝑐3 > 0.𝑘 is the conditional

number of Z. Then, let 𝑡 =
√
𝐶𝑁 /𝜇 for 𝜇 > 0, which satisfies the

definition of 𝑡 > 0. We can obtain:

𝑁

F ′

(
𝑐1𝑘

−1 − 2𝑐4
√
𝐶𝑘𝑠𝜌

𝜇
− 2𝜎

√
𝑐2𝐶𝑘

1 − 𝑐−1
0
𝜏𝜇

)
> 0 (17)

where 𝜏/𝜎 evaluates the signal-to-noise ratio. Take 𝜇 as the variable,

we can derive 𝜇 >
2𝑐4

√
𝐶𝑘2𝜌𝑠
𝑐1

+ 2𝜎
√
𝑐2𝐶𝑘

2

𝑐1𝜏 (1−𝑐−1
0
) , where the RHS is larger

than 1, i.e., 𝜇 > 1. Then we have:

𝑃𝑛𝑜𝑛−𝑜𝑟𝑡ℎ < (𝑝 + 5𝑝2)𝑒−𝐶𝑁 + 2𝑝2𝑒−𝐶𝑁 /𝜇
(18)

Recall we assume F ′ > 𝑁 and prove 𝜇 > 1, then we can complete

the proof for any 𝛿 > 0, there’s at least 1−𝛿 satisfies𝑁 ≥ 𝜇2

𝐶
(log(7+

1/𝑁) + 2 logF ′ − log𝛿). □

Theorem 3.2 implies that Φ is actually a screening consistent

variable (introduced by [46] which helps to select useful feature

in large dimension space) for any 𝛽 ∈ B𝜏 (𝑠, 𝜌), where B𝜏 (𝑠, 𝜌) =
{𝛽 ∈ RF′

: 𝑚𝑖𝑛
𝑖∈𝑠𝑢𝑝𝑝 (𝛽)

|𝛽𝑖 | ≥ 𝜏, 𝑠𝑢𝑝𝑝 (𝛽) ≤ 𝑠,
max𝑖∈𝑠𝑢𝑝𝑝 (𝛽) |𝛽𝑖 |
min𝑖∈𝑠𝑢𝑝𝑝 (𝛽) |𝛽𝑖 | ≤ 𝜌}

and 𝑠𝑢𝑝𝑝 (𝑓) means the support set of 𝑓 . Note that the set of 𝛽 is

the obtained as a least square solution, i.e., 𝛽 = WY, where Y is

the label. We analyze on both optimal solution and non-optimal

solution for contrastive learning. We can draw a conclusion for the

least square solver, the sample size and output dimension should be

at a certain value (not the larger the better). This theoretical result

is in fact consistent with our experimental results as will be shown

in Fig. 2 and Fig. 3.

4 EXPERIMENTS
4.1 Experimental Setups
Dataset and implementation. For graph datasets, we consider

five popular node classification benchmarks: Cora, Citeseer, Pubmed,

DBLP and PPI, and five graph classification benchmarks: MUTAG,

PTC_MR, IMDB-BINARY, IMDB-MULTI [50] and REDDIT-BINARY

[50]. The statistic information are given in Talbe. 1. For data aug-

mentation, we consider𝑚𝑜-mix and𝑚𝑝-mix can be applied in meth-

ods with SimCLR-like framework, hence, we choose edge dropping,

node feature masking in GRACE [61] and diffusion in MVGRL [12].

The model is implemented with PyTorch and each trial is executed

on a single Tesla V100 GPU. For image datasets, we mainly evaluate

our method on basis of SimCLR on CIFAR-10 and CIFAR-100, where

the data augmentation in images is in line with SimCLR [4], i.e.,

Random Resized Crop to 32 × 32, Random Horizontal Flip, Color

Jitter and Gray Scale.

Dataset statistic information. For node classification in trans-

ductive learning, we use Cora
2
, Citeseer

3
, Pubmed

4
and DBLP cita-

tion networks where documents (nodes) are connected through cita-

tion relations (edges). For graph classification, we use the following

datasets: MUTAG containing MUTAGenic compounds, PTC_MR

containing 344 chemical compounds represented as graphs which

report the carcinogenicity for rats, IMDB-BINARY and IMDB-MULTI

containing 1,000 actors/actresses who played roles in movies in

IMDB. In each graph, nodes represent actors/actresses, and there

is an edge between them if they appear in the same movie. These

graphs are derived from the Action and Romance genres. All the

graph datasets can be downloaded on this site
5
. Last, we predict pro-

tein roles in inductive learning protocol, in terms of their cellular

functions from gene ontology, within the protein-protein inter-

action (PPI) network to evaluate the generalization ability of the

proposed M-Mix across multiple graphs. The PPI dataset contains

multiple graphs, with each corresponding to human tissue. The

graphs are constructed by [11], where each node has multiple la-

bels that are a subset of gene ontology sets (121 in total), and node

features include positional gene sets, motif gene sets, and immuno-

logical signatures (50 in total). Following previous methods [11, 61],

we select twenty graphs consisting of 44,906 nodes as the training

set, two graphs containing 6,514 nodes as the validation, and the

rest four graphs containing 12,038 nodes as the test set. The detailed

statistic information is given in Table 1.

Hyper-parameter details.We choose GCN [21] as our back-

bones. The model is trained using Adam [20] with a learning rate of

3e-4 and 𝜏 is set 1. Instead of using grid search to select the optimal

2
https://relational.fit.cvut.cz/dataset/Cora

3
http://networkrepository.com/Citeseer.php

4
https://deepai.org/dataset/Pubmed

5
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

https://relational.fit.cvut.cz/dataset/Cora
http://networkrepository.com/Citeseer.php
https://deepai.org/dataset/Pubmed
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

KDD ’22, August 14–18, 2022, Washington, DC, USA Shaofeng Zhang et al.

Table 1: Dataset statistics. For graph classification, # NODES, # EDGES imply average number of nodes and edges in each graph.

statistics

node classification graph classification

Citeseer Cora Pubmed DBLP PPI MUTAG PTC_MR IMDB-BIN IMDB-MUL REDDIT-BIN

graphs 1 1 1 1 24 188 344 1000 1500 2000

nodes 3327 2708 19717 17716 56944 17.93 14.29 19.77 13.0 508.52

edges 4732 5429 105734 44338 818716 19.79 14.69 193.06 65.93 497.75

classes 6 7 3 4 121 2 2 2 3 2

number of GCN layers in different datasets [12, 37], our method

only uses a single-layer network as the backbone. For graph clas-

sification, We search 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 from [256, 512, 1024, 2048], which

can be trained on a single GPU. For node classification, we follow

DGI [42] and set the number of epochs to 2000 and select 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒

from [2, 4, 8] (on large graphs, we have to sample some subgraphs

instead of using the full graph for training). We also use early stop-

ping with the patience of 30 to prevent overfitting. We search the

dimension of hidden space of both node and graph representations

from [32, 64, · · · , 2048]. For𝑚𝑜-mix, we set 𝐶 as 0.2 as default.

Evaluation protocol. In line with [12, 29], we evaluate our ap-

proach under the linear classifier evaluation protocol for both node

and graph level classification. For node classification, we report the

mean classification accuracy with standard deviation on the test

nodes after 50 runs of training followed by a linear classifier. For

graph classification, we follow the standard protocol in InfoGraph

[37] and report the mean 10-fold cross-validation accuracy with

standard deviation after 5 runs followed by a linear SVM. We also

conduct experiments on two downstream tasks which are known

NP-hard: graph edit distance (a measure of similarity between two

graphs) and node clustering (nodes with similar attributes have

closer distance in embedding space), based on our node embedding.

4.2 Results for Node and Graph Classification
Baselines. We compare with both supervised and unsupervised

learning methods. For node classification, we compare our method

with recent popular self-supervised methods, e.g. GRAPH-CL [53],

MVGRL [12]. The results show our methods (both𝑚𝑜-mix and𝑚𝑝-

mix) achieve state-of-the-art performance on Citeseer and Pubmed.

On graph classification tasks, we compare with GCC [31], MV-

GRL [12] and GRAPH-CL [53]. Experimental results also show that

our method outperforms all of the unsupervised methods across

datasets except on REDDIT-BINARY. For the results of other base-

line models, we quote their results reported by [12].

Results on node classification. The results of node classifica-

tion in Table 2 show that𝑚𝑝-mix achieves state-of-the-art results

over both unsupervised and self-supervised methods. Specifically,

𝑚𝑝-mix outperforms existing unsupervised methods by 1.3% accu-

racy on Citeseer and Pubmed.𝑚𝑜-mix outperforms 1.6% and 1.2%

accuracy than original baseline MVGLR. Note that our reproduced

accuracy of MVGRL on Cora dataset doesn’t match with the origi-

nal paper reported. Other researchers also point out this problem

in these sites
67
. We also report𝑚𝑝-mix without diversity loss, and

the results show diversity loss can make M-Mix more stable, also

boosts accuracy.

6
https://github.com/kavehhassani/mvgrl/issues/2

7
https://github.com/hengruizhang98/mvgrl

Table 2: Mean accuracy (%) on node classification with 10-
fold cross validation. X: node features; A: adjacency matrix;
Y: labels; D: diffusion matrix in [38]; S: affinity matrix in this
paper; †: our reproduction otherwise results are quoted from
original papers. Diff: use diffusion as data augmentation.

method

dataset

input mode Cora Citeseer Pubmed

s
u
p
e
r
v
i
s
e
d

MLP [42] X, Y 55.1 46.5 71.4

ICA [7] A,Y 75.1 69.1 73.9

LP [60] A,Y 68.0 45.3 63.0

MANIREG [2] X, A, Y 59.5 60.1 70.7

SEMIEMB [2] X, Y 59.0 59.6 71.7

PLANETOID [51] X, Y 75.7 64.7 77.2

CHEBISHEV [5] X, A, Y 81.2 69.8 74.4

GCN [21] X, A, Y 81.5 70.3 79.0

MONET [25] X, A, Y 81.7 ± 0.5 – 78.8 ± 0.3

JKNET [49] X, A, Y 82.7 ± 0.4 73.0 ± 0.5 77.9 ± 0.4

GAT [42] X, A, Y 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

u
n
s
u
p
e
r
v
i
s
e
d

LINEAR [42] X 47.9 ± 0.4 49.3 ± 0.2 69.1 ± 0.3

DEEPWALK [30] X,A 70.7 ± 0.6 51.4 ± 0.5 74.3 ± 0.9

GAE [21] X,A 71.5 ± 0.4 65.8 ± 0.4 72.1 ± 0.5

VERSE [39] X, D, A 72.5 ± 0.3 55.5 ± 0.4 –

DGI [43] X, A 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6

DGI
†
[43] X, D 83.5 ± 0.7 71.8 ± 0.4 78.0 ± 0.4

GraphCL [53] X, A 82.3 ± 0.1 73.1 ± 0.2 –

GraphCL
†
[53] X, A 83.4 ± 0.7 72.4 ± 0.4 79.4 ± 0.7

GRACE
†
[61] X, A 82.2 ± 0.6 71.6 ± 0.6 78.4 ± 0.5

InfoGCL [47] X, A 83.5 ± 0.3 73.5 ± 0.4 79.1 ± 0.2

MVGRL [12] X, D, A 86.8 ± 0.5 73.3 ± 0.5 80.1 ± 0.7

MVGRL
†
[12] X, D, A 84.1 ± 0.9 73.5 ± 0.6 80.4 ± 1.1

𝑖-mix [23] X, A 84.6 ± 0.5 74.1 ± 0.5 81.1 ± 0.2

CCA-SSG [56] X, A 84.2 ± 0.4 73.1 ± 0.3 81.6 ± 0.4

o
u
r
s

𝑚𝑜-mix X, D, A 85.4 ± 0.4 75.1 ± 0.4 82.6 ± 0.2

𝑚𝑝-mix w/o div X, D, A 85.1 ± 0.8 74.4 ± 0.9 81.8 ± 0.7

𝑚𝑝-mix X, D, A 85.9 ± 0.3 75.8 ± 0.3 82.9 ± 0.3

Results on graph classification. Table 3 gives classification
accuracy on graph, where MVGRL+(𝑚𝑝-mix) outperforms the best

of existing state-of-the-art methods [12, 31] by 0.8%, 1.1%, 1.5%

on MUTAG, PTC_MR, IMDB-MULTI, respectively. On IMDB-BIN

and REDDIT-BIN,𝑚𝑝-mix achieves 1.2% and 3.6% accuracy than

baseline MVGRL.

4.3 Transferability Test on Downstream Tasks
Graph edit distance (GED). i) setup.Graph edit distance between
graphs G1 and G2 is defined as the minimum number of edit opera-

tions needed to transform G1 to G2. Typically the edit operations

include add / remove / substitute nodes and edges. However com-

puting the graph edit distance is NP-complete problem in general

[54], therefore approximations have to be used. There are also some

attempts by deep graph model [24]. In detail, they construct triplet

https://github.com/kavehhassani/mvgrl/issues/2
https://github.com/hengruizhang98/mvgrl

M-Mix: Generating Hard Negatives via Multi-sample Mixing for Contrastive Learning KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 3: Accuracy (%) on graph classification with 10-fold
cross validation. RANDOM: Random walk; N2VEC, S2VEC,
G2VEC:Node/sub-graph/graph to vector; w/o div: ourmethod
without using the diversity loss in Eq. 8

methods

datasets

MUTAG PTC_MR IMDB-BIN IMDB-MULTI REDDIT-BIN

k
e
r
n
e
l

SP [3] 85.2 ± 2.4 58.2 ± 2.4 55.6 ± 0.2 38.0 ± 0.3 64.1 ± 0.1

GK [35] 81.7 ± 2.1 57.3 ± 1.4 65.9 ± 1.0 43.9 ± 0.4 77.3 ± 0.2

WL [34] 80.7 ± 3.0 58.0 ± 0.5 72.3 ± 3.4 47.0 ± 0.5 68.8 ± 0.4

DGK [50] 87.4 ± 2.7 60.1 ± 2.6 67.0 ± 0.6 44.6 ± 0.5 78.0 ± 0.4
MLG [22] 87.9 ± 1.6 63.3 ± 1.5 66.6 ± 0.3 41.2 ± 0.0 –

s
u
p
e
r
v
i
s
e
d

GRAPHSAGE [11] 85.1 ± 7.6 63.9 ± 7.7 72.3 ± 5.3 50.9 ± 2.2 –

GCN [21] 85.6 ± 5.8 64.2 ± 4.3 74.0 ± 3.4 51.9 ± 3.8 50.0 ± 0.0

GIN-0 [48] 89.4 ± 5.6 64.6 ± 7.0 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5
GIN-𝜖 [48] 89.0 ± 6.0 63.7 ± 8.2 74.3 ± 5.1 52.1 ± 3.6 92.2 ± 2.3

GAT-𝜖 [42] 89.4 ± 6.1 66.7 ± 5.1 70.5 ± 2.3 47.8 ± 3.1 85.2 ± 3.3

PATCHY [26] 92.6 ± 4.2 60.0 ± 4.8 71.0 ± 2.2 45.2 ± 2.8 86.3 ± 1.6

u
n
s
u
p
e
r
v
i
s
e
d

RANDOM [6] 83.7 ± 1.5 57.9 ± 1.3 50.7 ± 0.3 34.7 ± 0.2 –

N2VEC [10] 72.6 ± 10.2 58.6 ± 8.0 – – –

S2VEC [1] 61.1 ± 15.8 60.0 ± 6.4 55.3 ± 1.5 36.7 ± 0.8 71.5 ± 0.4

INFOGRAPH [37] 89.0 ± 1.1 61.7 ± 1.4 73.0 ± 0.9 49.7 ± 0.5 82.5 ± 1.4

GRAPHCL [53] 86.8 ± 1.3 – 71.1 ± 0.4 – 89.5 ± 0.8
GCC-MOCO [31] – – 73.8 ± 1.1 50.3 ± 0.8 87.6 ± 0.9

GCC-RAND [31] – – 75.6 ± 0.9 50.9 ± 0.6 87.8 ± 0.7

MVGRL [12] 89.7 ± 1.1 62.5 ± 1.7 74.2 ± 0.7 51.2 ± 0.5 84.5 ± 0.6

MVGRL
†
[12] 90.1 ± 0.7 62.2 ± 1.1 74.4 ± 0.8 51.2 ± 0.7 85.1 ± 0.4

JOAO [52] 87.3 ± 1.0 – 70.2 ± 3.1 – 88.1 ± 0.2

JOAO v2 [52] 87.6 ± 0.8 – 70.8 ± 0.2 – 88.8 ± 0.6

InfoGCL [47] 91.2 ± 1.3 63.5 ± 1.5 75.1 ± 0.9 51.4 ± 0.8 –

o
u
r
s

𝑚𝑜-mix 91.8 ± 0.4 64.5 ± 0.4 75.1 ± 0.7 52.6 ± 0.5 88.4 ± 0.4

𝑚𝑝-mix w/o div 90.7 ± 1.3 63.7 ± 0.9 75.1 ± 0.7 52.0 ± 0.7 88.1 ± 0.6

𝑚𝑝-mix 92.0 ± 0.5 64.6 ± 0.4 75.6 ± 0.5 52.9 ± 0.4 88.7 ± 0.4

pairs through edit graph (substitute and remove) edges, which is

also an unsupervised model. For instance, they substitute 𝑘𝑝 edges

from graph G1 to generate G1𝑝 , then substitute 𝑘𝑛 edges to gener-

ate G1𝑛 . By set 𝑘𝑝 < 𝑘𝑛 , then, they regard the graph edit distance

between (G1,G1𝑝) is shorter than (G1,G1𝑛). But actually, the edit-
distance between (G1,G1𝑝) can be smaller than (G1,G1𝑛) due to
symmetry and isomorphism. However, the probability of such cases

is typically low and decreases rapidly with increasing graph sizes.

Finally, they train their model on these triplet pairs and evaluate

other triplets. Simpler than theirs, we don’t need to design special

pretext tasks on different tasks, but only use the pre-trained model

to evaluate this task. ii) evaluation and results.We conduct graph

edit experiments on [32]. In line with [32], our pre-trained models

are evaluated by two metrics: 1) pair AUC - the area under the ROC

curve for classifying pairs of graphs as similar or not on a fixed

set of 1000 pairs and 2) triplet accuracy - the accuracy of correctly

assigning higher similarity to the positive pair than the negative

pair, in a triplet on a fixed set of 1000 triplets. The comparison

of edit distance mainly includes two kinds of methods: 1) kernel-

based, such as HIST-KERNEL [15] and WL-KERNEL [34]. 2) deep

learning-based, i.e., supervised and MVGRL pre-trained. The results

in Table 10 show that our method outperforms other GNN methods.

We find that with a larger number of nodes, kernel-based methods

outperform GNN-based methods. In our analysis, one reason is that

kernel-based methods treat each node equally, while GNN-based

methods are likely to pay more attention to important nodes in a

sub-graph and this may hurt the global performance for GED. This

also explains why the AUC score of GNN-based methods is higher

than kernel-based methods but has a lower accuracy.

Cluster setup and results. Followed by [12], we evaluate our

method under clustering evaluation protocol and cluster the learned

Table 4: Graph classification accuracy w/ different objectives.

METHODS MUTAG PTC_MR IMDB-BIN IMDB-MULTI REDDIT-BIN

𝑚𝑝-mix (J𝑛𝑜𝑑𝑒 only) 91.4 ± 0.4 63.7 ± 0.4 74.9 ± 0.6 51.6 ± 0.5 88.4 ± 0.3

𝑚𝑝-mix (J𝑔𝑟𝑎𝑝ℎ only) 89.4 ± 0.7 61.0 ± 0.6 73.5 ± 0.6 50.7 ± 0.4 84.3 ± 0.7

𝑚𝑝-mix (w/o L𝑑𝑖𝑣) 90.7 ± 1.3 63.7 ± 0.9 75.1 ± 0.7 52.0 ± 0.7 88.1 ± 0.6

𝑚𝑝-mix 92.0 ± 0.5 64.6 ± 0.4 75.6 ± 0.5 52.9 ± 0.4 88.7 ± 0.4

Table 5: Normalized MI (NMI) and adjusted rand index (ARI)
on node clustering. The score is calculated by scikit-learn.

method

Cora Citeseer Pubmed

NMI ARI NMI ARI NMI ARI

u
n
s
u
p
e
r
v
i
s
e
d

VGAE [21] 0.3292 0.2547 0.2605 0.2056 0.3108 0.3018

MGAE [45] 0.5111 0.4447 0.4122 0.4137 0.2822 0.2483

ARGA [28] 0.4490 0.3520 0.3500 0.3410 0.2757 0.2910

ARVGA [28] 0.4500 0.3740 0.2610 0.2450 0.1169 0.0777

GALA [29] 0.5767 0.5315 0.4411 0.4460 0.3273 0.3214

MVGRL [12] 0.6291 0.5696 0.4696 0.4497 0.3609 0.3386

MVGRL+ (𝑚𝑝-mix) 0.6483 0.5917 0.4736 0.4628 0.3704 0.3431

Table 6: Graph and node classification by different branches.
z𝑎 , h𝑎 means only use the attentive branch output as the final
output. Average is the average ensemble, which means z =

(z𝑎 + z𝑎)/2 and h = (h𝑏 + h𝑏)/2. Like ensemble, the aggregated
output is more stable than individual output.

Branch

node classification graph classification

Cora Citeseer Pubmed MUTAG PTC_MR IMDB-BIN IMDB-MULTI

z𝑎 , h𝑎 85.3 ± 0.3 75.6 ± 0.3 82.7 ± 0.4 91.1 ± 0.5 64.5 ± 0.5 75.5 ± 0.7 52.6 ± 0.6

z𝑏 , h𝑏 85.5 ± 0.4 75.5 ± 0.4 82.7 ± 0.5 91.8 ± 0.6 64.1 ± 0.5 75.1 ± 0.6 52.4 ± 0.5

Average 85.9 ± 0.3 75.8 ± 0.3 82.9 ± 0.3 92.0 ± 0.5 64.6 ± 0.4 75.6 ± 0.5 52.9 ± 0.4

representations using the K-Means algorithm for node classification

in Table 5. In detail, we set the number of clusters to the number

of ground-truth classes and report the average normalized mutual

information score (NMI) and adjusted rand score (ARI).

4.4 Ablation Study
Comparison of M-Mix-wp, M-Mix-op and binary mix. In Sec-

tion 3, we have designed an approach named M-Mix-wp, to avoid

utilizing prior adjacency matrix. Hence we are able to evaluate

this approach in both vision (no adjacency matrix is available) and

graph domains. We also compare our method with binary mixing.

For the implementation of binary mixing, we choose the most simi-

lar negative sample of each query positive sample in one batch and

mix them with mixing weight 0.5 as default. In vision datasets, we

choose SimCLR [4] as baselines, and use ResNet-18 [14] as back-

bone. We set the max epoch as 500, and use Adam optimizer with

learning rate 1e-3. We evaluate the pre-trained model with a linear

model, where the baseline code is from the site
8
. Table 7 shows

the accuracy with different mixing strategies, where multi-sample

mixing achieves better results than binary mixing. Note that there’s

no prior adjacency matrix information to use in vision, thus we

only compare our M-Mix-op with binary-mix. The reason why

the accuracy of M-Mix-op is slightly lower than M-Mix-wp is that

M-Mix-wp utilizes the prior knowledge while M-Mix-op doesn’t.

We think one of the future directions worth exploring is estimating

“adjacency knowledge” across images in vision.

8
https://github.com/leftthomas/SimCLR

https://github.com/leftthomas/SimCLR

KDD ’22, August 14–18, 2022, Washington, DC, USA Shaofeng Zhang et al.

Table 7: Top-1 classification accuracy on node (with MVGRL) and image (with SimCLR) by different mixing strategies.

Method Cora Citeseer PubMed Method CIFAR-10 CIFAR-100

MVGRL 84.3 ± 1.1 73.1 ± 0.7 80.1 ± 0.8 SimCLR 89.21 61.53

MVGRL+(binary-mix) 84.9 ± 0.9 74.1 ± 0.5 81.4 ± 0.7 SimCLR+(binary-mix) 89.47 61.82

MVGRL+(𝑚𝑜-mix-op) 85.4 ± 0.4 75.1 ± 0.4 82.6 ± 0.2 SimCLR+(𝑚𝑜-mix-op) 90.09 62.86
MVGRL+(𝑚𝑜-mix-wp) 85.9 ± 0.3 75.8 ± 0.3 82.9 ± 0.3 SimCLR+(𝑚𝑜-mix-wp) ∼ ∼

Table 8: Node classification accuracy. GRACE†: our reproduce – and the variants in bracket is based on GRACE†.

Dataset Protocol GRACE GRACE
†

GRACE (GAT) GRACE+(𝑖-mix [23]) GRACE+(𝑚𝑝-mix w/o div) GRACE+(𝑚𝑝-mix)

DBLP Transductive 84.2 ± 0.1 83.8 ± 0.2 84.3 ± 0.2 84.6 ± 0.2 85.2 ± 0.2 85.6 ± 0.1
PPI Inductive 66.2 ± 0.1 66.3 ± 0.2 66.3 ± 0.1 66.4 ± 0.3 67.3 ± 0.2 67.8 ± 0.1

32 64 128 256 512 1024 2048
Dimension

74

76

78

80

82

Ac
cu

ra
cy

Sample size
1000
1500
2000
3000
10000

32 64 128 256 512 1024 2048
Dimension

76

78

80

82

Ac
cu

ra
cy

Sample size
1000
1500
2000
3000
10000

Figure 2: Node classification accuracy (%) on Pubmed dataset
with different sample sizes and different hidden dimensions.
(Left: w/o div loss; Right: w/ div loss)

Comparison with GAT. As discussed in Section 3, 𝑚𝑝-mix

without diversity loss is somewhat similar to GAT [41], while𝑚𝑜-

mix and𝑚𝑝-mix are completely different from GAT in terms of both

methodology and technology. Here, we further design experiments

to clarify the difference. We evaluate 𝑚𝑝-mix with the baseline

GRACE [61] on DBLP and PPI benchmarks. As shown in Table 8,

after replacing the backbone GNN in GRACE with GAT, we only

get 0.4% and 0.0% accuracy improvement on DBLP and PPI datasets.

However, when we use multi-sample mixing methods, 𝑚𝑝-mix

outperforms baseline GRACE 1.4% and 1.6% accuracy on DBLP and

PPI, respectively.

Mixing weights. To further explore the effect of different mix-

ing weights, we design a baseline, i.e., randomly generating mixing

weights from Gaussian distribution and regularizing them with

Softmax function. Table 9 shows the accuracy of different mixing

weights. Although randomly generated value can get a little im-

provement over baseline MVGRL, it suffers from instability (high

variance). Then, by replacing the randommixwith the proposed𝑚𝑜-

mix and𝑚𝑝-mix with diversity loss, the performance is improved

by a notable margin in both accuracy and stability.

Output dimension and sample size. Contrastive learning usu-
ally requires a large number of negative pairs. To evaluate the

robustness of our method w.r.t the number of negative samples (i.e.,

subgraph sample size), we try different combinations of sample size

and output dimension. Fig. 2 shows the result on Pubmed. Different

from the empirical conclusion in vision [4, 13] (large output dimen-

sion leads to better results (saturate at 4096)), we find that a proper

combination of output dimension and the sample size is important

in graph contrastive learning, which is in line with Theorem 3.2.

0 250 500 750 1000 1250 1500 1750 2000
epoch

60

65

70

75

80

ac
c (10000, 2048)

(10000, 1024)
(10000, 512)
(10000, 256)
(10000, 128)
(10000, 64)
(10000, 32)

Figure 3: Accuracy (%) and standard variance with differ-
ent batch / hidden pairs over training epochs. For instance,
(10000, 2048) means training with 𝑁 = 10000, F ′ = 2048.

Empirically, a smaller output dimension (i.e., 256) forces to pull

samples in a lower-dimensional hyper-sphere uniformly, which is

more difficult than pulling in a large dimensional hyper-sphere.

However, when the output dimension is too small (i.e., 32), the

information can not be fully represented. Thus, the best accuracy

is obtained when the output dimension is set as 256. On the other

hand, we can not ignore the advantage of large output dimension,

that is, the stability (standard-deviation, see error bar in Fig. 2) of

M-Mix can significantly improve and the convergence rate (see

Fig. 3) compared with low output dimension.

Effect of graph level contrastive loss. Graph classification

usually requires global information of one graph, where node level

contrastive learningmethods usually learn local information. To fur-

ther explore the effect of contrastive learning in different levels. We

conduct experiments with graph-level only, node-level only. Table 4

shows J𝑔𝑟𝑎𝑝ℎ can helpfully improve graph level representation,

while without J𝑛𝑜𝑑𝑒 , GNN encoder can not extract fine-grained

information.

Effect of architecture aggregating. To demonstrate our per-

formance is not due to GNN architecture, we report the accuracy

of two branches (view (a) and view (b)). Note that the difference

between the two branches is only augmentation hyper-parameters.

As Table 6 shows, both two branches achieve remarkable results.

Detail of ablation experiments on different sample sizes
and output dimensions. We test our method under different

sample sizes and output dimensions. We set the epoch as 2000

and record the accuracy every 10 epochs. We find with a higher

output dimension, the model’s stability is increasing, meanwhile,

M-Mix: Generating Hard Negatives via Multi-sample Mixing for Contrastive Learning KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 9: Accuracy (%) comparison. The first line MVGRL means taking normalized adjacency and diffusion matrix as input to
perform contrasting and the loss is the same as [12]. The remaining lines use objectives of this paper J𝑛𝑜𝑑𝑒 in Eq. 10 and J𝑔𝑟𝑎𝑝ℎ
in Eq. 11. MVGRL+(random mix) means the designed baseline. We fine-tune hyper-parameters for different methods.

method

task node classification graph classification

Cora Citeseer Pubmed MUTAG PTC_MR IMDB-BIN IMDB-MULTI

MVGRL 84.1 ± 0.9 73.5 ± 0.6 80.4 ± 1.1 90.1 ± 0.7 62.2 ± 1.1 74.4 ± 0.8 51.2 ± 0.7

MVGRL
†

84.3 ± 1.1 73.1 ± 0.7 80.1 ± 0.8 89.7 ± 0.8 62.8 ± 1.0 73.8 ± 0.4 51.3 ± 0.7

MVGRL+(random-mix) 84.1 ± 1.6 73.8 ± 1.1 81.1 ± 1.0 89.9 ± 1.3 63.1 ± 1.4 74.2 ± 1.0 52.0 ± 0.9

MVGRL+(𝑚𝑜-mix) 85.4 ± 0.4 75.1 ± 0.4 82.6 ± 0.2 91.8 ± 0.4 64.5 ± 0.4 75.1 ± 0.7 52.6 ± 0.5

MVGRL+(𝑚𝑝-mix) 85.9 ± 0.3 75.8 ± 0.3 82.9 ± 0.3 92.0 ± 0.5 64.6 ± 0.4 75.6 ± 0.5 52.9 ± 0.4

Table 10: Accuracy (top) and AUC (bottom) on COIL-DEL for
the task of graph edit distance. HIST-KERNEL means vertex
edge hist kernel; 𝑛 is the number of nodes in sampled sub-
graph.Weuse the implementation of the twokernelmethods,
i.e., HIST-KERNEL [15] and WL-KERNEL [34] provided by
[36] to produce the results.

𝑛 HIST-KERNEL WL-KERNEL supervised MVGRL MVGRL+(𝑚𝑝-mix)

A
c
c
u
r
a
c
y 50 0.153 ± 0.131 0.934 ± 0.017 0.813 ± 0.019 0.713 ± 0.034 0.741 ± 0.039

20 0.160 ± 0.103 0.826 ± 0.014 0.783 ± 0.031 0.824 ± 0.021 0.856 ± 0.011
15 0.138 ± 0.076 0.791 ± 0.037 0.814 ± 0.014 0.847 ± 0.014 0.842 ± 0.017

10 0.129 ± 0.059 0.751 ± 0.034 0.903 ± 0.009 0.891 ± 0.032 0.911 ± 0.008

A
U
C

50 0.501 ± 0.001 0.525 ± 0.001 0.587 ± 0.009 0.649 ± 0.014 0.663 ± 0.021
20 0.507 ± 0.002 0.564 ± 0.008 0.782 ± 0.009 0.788 ± 0.005 0.794 ± 0.003
15 0.503 ± 0.001 0.594 ± 0.017 0.781 ± 0.031 0.801 ± 0.015 0.813 ± 0.024
10 0.507 ± 0.003 0.626 ± 0.009 0.832 ± 0.011 0.861 ± 0.007 0.854 ± 0.010

Anchor

Mix instances

Anchor

Mix instances

Anchor

Mix instances

Anchor

Mix instances

Figure 4: Visualization of multi-sample mixing on CIFAR-10,
where anchor means the input query image and mix samples
mean the selected mixing instances by M-Mix.

the convergence rate is faster than the low dimension. When set

output dimension as 2048, the best model can be obtained in 200

epochs, while set hidden dimension as 64, the convergence rate of

the model is much slower (best results are got about 2000 epochs).

From Figure 3, we can easily observe that with a large output dimen-

sion, initialed embedding has remarkable representation ability. We

guess it is because, with a larger output dimension, the initialized

node embedding vector is closer to the optimal solution (orthogonal

in hypersphere).

Visualization on Vision Datasets. Our M-Mix can adaptively

select which samples should be mixed and gives them different

Anchor

Mix instances

Anchor

Mix instances

Anchor

Mix instances

Anchor

Mix instances

Anchor

Mix instances

Figure 5: Visualization of samples mixing on CIFAR-100.

mixing weights. Here we randomly select anchor samples in CIFAR-

10 and CIFAR-100, and visualize the mixing samples selected by

M-Mix in Fig. 4 and Fig. 5, respectively. The mined samples have

similar semantic information with anchor images, which greatly

improves the difficulty of discrimination after mixing.

5 CONCLUSION
In this paper, we have proposed a new𝑚𝑝-mix to mine hard nega-

tives for contrastive learning, whichmixesmulti-sample and assigns

different mixing weights dynamically. To our best knowledge, this

is the first attempt at mixing multiple samples other than the two

common practices of mixing two samples, and also the first work

for learning mixing weights dynamically. Then, we theoretically

analyze why the proposed strategy of assigning mixing weight is

better than others. We further provide theoretical analysis on the

relation of output dimension and sample size, and show how to

estimate their suitable values. The experiments are conducted on

two image classification datasets, five node classification datasets,

and five graph classification datasets, where our method achieves

state-of-the-art performance on most of the datasets. To further

evaluate our method’s transferability, we conduct two downstream

experiments on clustering and graph edit distance. The results im-

ply our method can stabilize the model with high transferability.

Seeing its exhibited good generalization ability, our method can be

potentially applied in other domains, such as NLP and cross-modal

pretraining, which we leave for future work.

KDD ’22, August 14–18, 2022, Washington, DC, USA Shaofeng Zhang et al.

REFERENCES
[1] Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. 2018.

Sub2vec: Feature learning for subgraphs. In PAKDD.
[2] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-

tion: A geometric framework for learning from labeled and unlabeled examples.

JMLR (2006).

[3] Karsten M Borgwardt and Hans-Peter Kriegel. 2005. Shortest-path kernels on

graphs. In ICDM.

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A

simple framework for contrastive learning of visual representations. In ICML.
[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. NeurIPS
(2016).

[6] Thomas Gärtner, Peter Flach, and Stefan Wrobel. 2003. On graph kernels: Hard-

ness results and efficient alternatives. In Learning theory and kernel machines.
[7] Lise Getoor. 2005. Link-based classification. In Advanced methods for knowledge

discovery from complex data.
[8] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

networks. arXiv preprint (2014).
[9] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-

han Daniel Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own

latent: A new approach to self-supervised learning. NeurIPS (2020).
[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In KDD.
[11] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS.
[12] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view

representation learning on graphs. In ICML.
[13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-

mentum contrast for unsupervised visual representation learning. In CVPR.
[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In CVPR.
[15] Shohei Hido and Hisashi Kashima. 2009. A linear-time graph kernel. In ICDM.

[16] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip

Bachman, Adam Trischler, and Yoshua Bengio. 2019. Learning deep representa-

tions by mutual information estimation and maximization. In ICLR.
[17] Qianjiang Hu, XiaoWang, Wei Hu, and Guo-Jun Qi. 2020. AdCo: Adversarial Con-

trast for Efficient Learning of Unsupervised Representations from Self-Trained

Negative Adversaries. arXiv preprint (2020).
[18] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and

Diane Larlus. 2020. Hard negative mixing for contrastive learning. arXiv preprint
arXiv:2010.01028 (2020).

[19] Sungnyun Kim, Gihun Lee, Sangmin Bae, and Se-Young Yun. 2020. MixCo: Mix-up

Contrastive Learning for Visual Representation. arXiv preprint arXiv:2010.06300
(2020).

[20] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In ICLR.
[21] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[22] Risi Kondor and Horace Pan. 2016. The multiscale laplacian graph kernel. arXiv
preprint (2016).

[23] Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo Shin, and Honglak

Lee. 2020. 𝑖-Mix: A Domain-Agnostic Strategy for Contrastive Representation

Learning. In ICLR.
[24] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.

Graph matching networks for learning the similarity of graph structured objects.

In ICML.
[25] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,

andMichael M Bronstein. 2017. Geometric deep learning on graphs andmanifolds

using mixture model cnns. In CVPR.
[26] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning

convolutional neural networks for graphs. In ICML.
[27] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
[28] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.

2018. Adversarially Regularized Graph Autoencoder for Graph Embedding. In

IJCAI.
[29] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young

Choi. 2019. Symmetric graph convolutional autoencoder for unsupervised graph

representation learning. In ICCV.
[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD.
[31] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,

Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph

neural network pre-training. In KDD.

[32] Kaspar Riesen and Horst Bunke. 2008. IAM graph database repository for graph

based pattern recognition and machine learning. In Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural
and Syntactic Pattern Recognition (SSPR).

[33] Zhiqiang Shen, Zechun Liu, Zhuang Liu, Marios Savvides, and Trevor Darrell.

2020. Rethinking image mixture for unsupervised visual representation learning.

arXiv e-prints (2020), arXiv–2003.
[34] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,

and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. JMLR (2011).

[35] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten

Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In

Artificial intelligence and statistics.
[36] Mahito Sugiyama, M Elisabetta Ghisu, Felipe Llinares-López, and Karsten Borg-

wardt. 2018. graphkernels: R and Python packages for graph comparison. Bioin-
formatics (2018).

[37] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. 2019. InfoGraph:

Unsupervised and Semi-supervised Graph-Level Representation Learning via

Mutual Information Maximization. In ICLR.
[38] Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2020. Contrastive multiview

coding. In ECCV.
[39] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.

Verse: Versatile graph embeddings from similarity measures. In WWW.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. arXiv preprint (2017).
[41] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[42] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. 2018. Deep graph infomax. stat (2018).
[43] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. 2019. Deep Graph Infomax.. In ICLR.
[44] Vikas Verma, Thang Luong, Kenji Kawaguchi, Hieu Pham, and Quoc Le. 2021.

Towards domain-agnostic contrastive learning. In ICML.
[45] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. 2017.

Mgae: Marginalized graph autoencoder for graph clustering. In CIKM.

[46] Xiangyu Wang, Chenlei Leng, and David B Dunson. 2015. On the consistency

theory of high dimensional variable screening. In NeurIPS.
[47] Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang.

2021. Infogcl: Information-aware graph contrastive learning. NeurIPS (2021).
[48] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful

are Graph Neural Networks?. In ICLR.
[49] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs

with jumping knowledge networks. In ICML.
[50] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In KDD.
[51] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In ICML.
[52] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph

Contrastive Learning Automated. ICML (2021).

[53] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph contrastive learning with augmentations. NeurIPS (2020).
[54] Zhiping Zeng, Anthony KH Tung, JianyongWang, Jianhua Feng, and Lizhu Zhou.

2009. Comparing stars: On approximating graph edit distance. Proceedings of the
VLDB Endowment (2009).

[55] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2018.

mixup: Beyond Empirical Risk Minimization. In ICLR.
[56] Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and S Yu Philip. 2021.

From canonical correlation analysis to self-supervised graph neural networks. In

NeurIPS.
[57] Shaofeng Zhang, Lyn Qiu, Feng Zhu, Junchi Yan, Hengrui Zhang, Rui Zhao,

Hongyang Li, and Xiaokang Yang. 2022. Align Representations with Base: A

New Approach to Self-Supervised Learning. In CVPR.
[58] Shaofeng Zhang, Feng Zhu, Junchi Yan, Rui Zhao, and Xiaokang Yang. 2021. Zero-

CL: Instance and Feature decorrelation for negative-free symmetric contrastive

learning. In ICLR.
[59] Qiang Zhou, Chaohui Yu, Zhibin Wang, Qi Qian, and Hao Li. 2021. Instant-

Teaching: An End-to-End Semi-Supervised Object Detection Framework. In

CVPR.
[60] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised

learning using gaussian fields and harmonic functions. In ICML.
[61] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.

Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

[62] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.

Graph Contrastive Learning with Adaptive Augmentation. In WWW.

	Abstract
	1 Introduction
	2 Related work
	3 The proposed M-Mix
	3.1 Preliminaries
	3.2 Hard Negatives via Multi-Sample Mixing
	3.3 Framework and Objective
	3.4 Theoretical Analysis on Dimensions

	4 Experiments
	4.1 Experimental Setups
	4.2 Results for Node and Graph Classification
	4.3 Transferability Test on Downstream Tasks
	4.4 Ablation Study

	5 Conclusion
	References

